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1 Executive Summary 
The ISOLDE project aims to create high-performance processing systems and platforms targeting different 
use cases (space, automotive, smart home, cellular IoT) based on the free, open-source RISC-V instruction 
set architecture. This document defines the initial architecture of the required hardware modules and 
extensions (called extensions in the following) developed within the work package WP3 “Accelerators and 
Extensions” of the ISOLDE project to reach this goal. It encompasses contributions from all tasks (T3.1 to 
T3.6) and partners within WP3.  

The extensions described in this report are grouped into different domains matching the scope of the 
different tasks within WP3: 

1. Extensions enhancing the safety and security of RISC-V systems (T3.1) 
2. Accelerator infrastructure, memories, arithmetic units, interfaces, and virtualization (T3.2) 
3. Extensions that allow monitoring of the foundational core and accelerators (T3.3) 
4. Accelerators speeding up vector, tensor, and other AI-related operations (T3.4) 
5. Accelerators speeding up cryptographic primitives (T3.5) 
6. Accelerators speeding up signal processing, neuromorphic operations, and application-specific 

instruction set processors (T3.6) 

For each extension, this document contains general information (type, dependencies, and license) and an 
initial architecture description giving a first insight into its purpose and internals. These initial architecture 
descriptions answer core questions about each extension: 

• What is the purpose of the extension? 

• Where in the system is it integrated? 

• How does the extension work? 

• How is the extension connected with the rest of the system? How can they interact? 

• How is the extension verified? 

WP5 “Use Cases and Demonstrators” will combine the foundational cores developed by WP2 “Open-source 
Foundation Cores” and selected features from WP3, building diverse demonstrators (space, automotive, 
smart home, cellular IoT) that highlight benefits and opportunities enabled by individual extensions. Further, 
WP4 “System Software, Development Tools and Automation” will provide the required software support 
(e.g., toolchains, operating system support, drivers). Hence, the contributions of this deliverable are crucial 
for further collaboration with these work packages. In the context of WP3, this deliverable is the basis for 
the follow-up deliverables covering the prototype and final implementations of the extensions (D3.2, D3.3 
in M24 and D3.4, D3.5 in M33). The components described in this deliverable are aiming at different 
maturity levels and aiming for different certifiability. Further, this document represents the first iteration of 
the architecture definitions and hence not all contributions have the same level of maturity. A short survey 
of the ISOLDE partners for certification intentions (including WP3 components) will be later provided by 
SYSGO as part of WP1 work.  
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2 Introduction  

2.1 General Information 

Work Package 3 (WP3) focuses on developing hardware modules and extensions enhancing RISC-V 
systems based on the foundational cores provided by WP2 to create and demonstrate high-performance 
computing systems within WP5.  

The purpose of Deliverable D3.1, titled "Initial Architecture Description", is to document the preliminary 
design of these hardware modules and extensions. This document is intended for public release and 
includes the hardware extensions' initial architecture and design specifications. These initial architecture 
and design specifications encapsulate the extensions' technical research and developmental progress. 

It is crucial to note that this document represents the first iteration of the Deliverable, marking the 
commencement of a bottom-up approach to address all ongoing activities comprehensively. Throughout 
the project's duration, the report will undergo multiple revisions to encapsulate the breadth of work 
completed to date.  

WP3 organizes the project into distinct tasks covering different domains, with various partners contributing 
to each. The deliverable is structured first to introduce WP3 and its place in the overall ISOLDE project in 
Section 3. The subsections of Section 3 outline the tasks ranging from Task 3.1 to 3.6, offering an initial 
summary of each task followed by a table that outlines the extensions and the respective partners involved. 
The remainder of these subsections contains in-depth technical information about the specific extensions. 

2.2 Purpose and Scope 

This document serves as an essential guide to the ISOLDE project's activities, detailed through its technical 
descriptions of the hardware extensions. These descriptions not only review the past endeavours but also 
set the stage for the upcoming tasks. The primary goal of the initial architecture descriptions within this 
document is to offer preliminary insights into the project's features. This includes detailing the purpose, 
dependencies, and architectural nuances of each feature—covering aspects such as their system 
placement, block diagrams, instruction set architecture (ISA), interfaces, sub-modules, and strategies for 
clocking, resetting, power management, verification and debugging. Note that these aspects are not 
explicitly covered for every hardware extension in this document either because the aspect is not relevant 
for the extension, the information is not noteworthy (e.g., standard practice) or the development state is not 
yet mature enough. Such detailed information is crucial for seamless integration and collaboration with 
related work packages: WP2, which focuses on the development of foundational cores; WP5, which merges 
these cores with selected features; and WP4, which develops the requisite software support. Within the 
framework of WP3, this deliverable lays the groundwork for subsequent reports that will document the 
prototyping and final implementations of these features, specifically Deliverables D3.2 and D3.3 due in 
Month 24, and D3.4 and D3.5 scheduled for Month 33. 
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3 Accelerators and Extensions (WP3) 
WP3 focuses on two directions: i) safety, security and monitoring infrastructure and ii) acceleration 
infrastructure, domain specific accelerators and ASIPs for applications such as cryptography, machine 
learning and signal processing.  

 

 

Figure 3-1: Overview of the IPs developed in WP3. 

Work Package 3 “Accelerators and Extensions” receives the requirements and specifications from Work 
Package 1 and delivers accelerators and extensions to Work Package 5 “Use Cases and Demonstrators”. 
WP3 cooperates with Work Package 2 “Open-source Foundation Cores” to integrate the accelerators and 
Safety & Security Extensions with the general-purpose cores using interfaces and drivers. WP3 designs 
are used in WP4 to develop software tools. WP6 provides WP3 feedback regarding potential software 
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licensing issues. Regarding exploitation of the results, WP3 peripherals, modules and accelerators are 
made available via the developing partners or via the WP6 open-source repository channels. WP3 
contributes to Milestone MS2 – Foundations. Figure 3-2 shows the interaction between WP3 and the other 
work packages. 

Figure 3-2: PERTT chart showing Sequence and Interactions in the ISOLDE Project 

 

WP3 is organized in six tasks, and all tasks run in parallel from M3 to M33: T3.1 “Safety & Security Modules”; 
T3.2. “Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization”; T3.3 “Monitoring 
infrastructure”; T3.4. “SIMD/Vector, AI accelerator and tensor processor unit design”; T3.5. “Cryptographic 
and security accelerators”; T3.6. “Signal processing, neuromorphic and application-specific instruction set 
processors (ASIPs)”. A top-view description of the work carried on in this package is synthesized by Figure 
3-1. WP3 contributes to the following Specific Objectives (SOs): SO2, SO4, SO5, SO6 and SO7.The overall 
WP3 objectives as listed in the Description of the Action are: 

• Encourage the development of open-source accelerators and extensions while ensuring their 

compatibility with closed-source IP, helping to widen the RISC-V ecosystem (SO2, SO5, SO6, 

SO7); 

• Design hardware modules and extensions supporting and enhancing RISC-V safety and security 

(SO4); 

• Design hardware accelerators targeting specific applications domains and exploiting available 

parallelism (SO2, SO5); 

• Incorporate custom fixed- and floating-point units to allow trade-offs between precision and 

throughput (SO2, SO5); 

• Design scratchpad memories for hardware accelerators (SO2, SO5); 

• Develop a monitoring infrastructure to expose the relevant figures of merit for the hardware designs 

developed in this WP (SO2, SO5); 

• Each hardware block developed in this WP will be verified at the RTL level, including unit testing 

and a testbench which verifies the required functionality (SO6). 
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3.1 Safety and Security Modules 

Task 3.1, M3-M33, Task Leader: BSC 

Task 3.1 focuses on the development of technologies supporting safety and security. The developed 
security modules include components for memory encryption, control flow integrity (CFI), memory isolation, 
hardware support for bytecode virtual machine interpreters, and hardware root of trust. On the safety side, 
the T3.1 modules include a context-aware performance monitor counter, a traffic injector for platform 
validation, a safety control unit collecting and processing detected on-chip errors, and an interface between 
the safety island and the processing system.  

 

IP 
Lead 

Beneficiary 
Type Domain Dependencies Licensing 

IEE NXP-AT 
RISC-V Core 
extension; Core 

Security None 
Proprietary 
closed source 

BCFI NXP-AT 
RISC-V Core 
extension 

Security 
RV32I processor, 
IEE 

Proprietary 
closed source 

CA-PMC TRT Core Safety 
Integration target, 
CA-PMC-IF 

TBD 

CTM NXP-AT 
RISC-V Core 
extension 

Security 
RV32I processor, 
IEE 

Proprietary 
closed source 

EMI NXP-AT 
RISC-V Core 
extension 

Security 
RV32I processor, 
IEE 

Proprietary 
closed source 

FCFI NXP-AT 
RISC-V Core 
extension 

Security RV32I processor 
Proprietary 
closed source 

Memory 
Subsystem 
Support for 
Bytecode VMs 

HM 
RISC-V Core 
extension 

Security None 
Permissive open 
source (SHL-
2.1, Apache-2.0) 

SafeTI BSC Core Safety None 
Permissive open 
source (MIT) 

Safety and 
Security Control 
Unit 

IFX Core 
Safety, 
Security 

None Open source 

Safety Island UZL Core Safety CVA6 Open source 

RoT UNIBO Core Security OpenTitan 
Permissive open 
source (Apache 
/ SHL) 

TitanCFI UNIBO 

CVA6 
extension; 
OpenTitan 
extension 

Security CVA6, OpenTitan 
Permissive open 
source  
(Apache-2.0) 

High-
Performance 
Cache Analysis 

SYSGO Analysis Security 
CVA6, CEA cache 
(TRISTAN)  Not applicable 

Table 3.1-1: Overview of contributions in Task 3.1 

  

https://github.com/openhwgroup/cva6
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https://github.com/openhwgroup/cva6
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3.1.1 Inline Encryption Engine (IEE) – NXP-AT 

Part of Task 3.1 Safety & Security Modules. 

3.1.1.1 General Information 

Different workloads and secrets are usually isolated using the processor’s privilege modes and logical 
isolation techniques (e.g., memory protection and management units). The RISC-V ISA defines three 
privilege levels: machine (M), supervisor (S), and user (U) mode. At any point, a RISC-V core is running in 
one of these privilege levels. The different privilege levels enable the isolation of different units in the 
software stack. For example, software running in M mode (e.g., the firmware) has unrestricted access to all 
resources and configuration registers. On the other hand, software running in S (e.g., the operating system) 
or U (e.g., user applications) mode is more restricted. In this setting, trusted software (e.g., the operating 
system) running in a higher privilege mode with the capability to configure the logical isolation sets up a 
restricted memory view for the workloads running in the lower privilege modes. However, this isolation 
breaks as soon as physical attacks are considered. Examples of such attacks include:  

• Attacks physically probing the external memory bus between the processor and memory chip.  

• Attacks injecting faults in the logical isolation primitives or during their configuration by the trusted 
software [Nashimoto2021]. 

• Attacks using fault injection to modify the data in the memory [Roscian2013]. Note that software-

based attacks can also trigger fault injections in memory, as Rowhammer [Kim2014] showed.   

Major processor vendors started integrating memory encryption engines into their architectures to mitigate 
these threads transparently [Kaplan2021, Intel2021]. The memory encryption engine encrypts all data 
before it reaches the external bus. The resulting ciphertext depends on the physical address (used as tweak) 
in addition to the secret key to counter attacks exchanging the encrypted data words. The hardware 
samples the memory encryption key from a random number generator at each reset and stores it in a non-
accessible register.   

In systems with an enabled memory encryption engine, all data on the external bus and in memory is 
encrypted. Therefore, the attacker can no longer leak data or easily inject controlled modifications. If a pure 
encryption scheme is used as a primitive for memory encryption, then the confidentiality of the data on the 
external bus and in memory is protected. However, the integrity of the data cannot be ensured, meaning 
the attacker can perform modifications without detection. Still, the attacker cannot change the plaintext in a 
controlled way, assuming the relationship between plaintext and ciphertext is unknown, i.e., the attacker 
has no way to build a dictionary of plaintext-ciphertext pairs for the address. Alternatively, authenticated 
encryption schemes can be used, which also provide data integrity but have a higher memory overhead.   

Memory encryption engines prevent or raise the bar for many physical attacks, but they also impose 
considerable area and latency overhead while not increasing resilience against logical attacks.   

3.1.1.2 Purpose and Scope 

The Inline Encryption Engine (IEE) module adds a tweakable memory encryption engine based on a low-
latency block cipher to the base RV32 core. The difference to the schemes mentioned in the previous 
section is that we use a tweak input to make the resulting ciphertext depend on additional metadata. This 
metadata is provided by other modules contributed by NXP-AT, which add defense mechanisms against 
logical attacks. For more information about these modules, please refer to the architectural description of 
the Backward-Edge Control Flow Integrity (BCFI; see Section 3.1.2), Cryptographically Tagged Memory 
(CTM; see Section 3.1.4), and Enclave Memory Isolation (EMI; see Section 3.1.5) module provided by 
NXP-AT. Systems that already include a memory encryption engine especially benefit from this approach, 

as adding the mentioned defenses against logical attacks comes at little cost.  
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3.1.1.3 Place in the System 

The IEE module targets RV32 cores without a Memory Management Unit (MMU). Figure 3.1.1.3-1 shows 
that the IEE module is placed before the memory controller (MC), acting as a wrapper for the memory 
requests issued by the cache subsystem. Hence, the IEE module has two bus interfaces (e.g., Arm 
Advanced Microcontroller Bus Architecture Advanced High-performance Bus – AMBA AHB), one 
connecting it to the cache subsystem and the other to the memory controller. Further, the IEE module 
requires the IEE-RV ISA extension and changes to the cache subsystem which will all be described in the 
following. Note that the IEE module can also be integrated into processors without a cache, but then the 
latency of the memory encryption and decryption has more impact on the core’s performance. 

 

Figure 3.1.1.3-1: Overview of the IEE module in the system 

3.1.1.4 Block Diagram 

Figure 3.1.1.4-1 shows the internals of the IEE module. The IEE module is placed before the memory 
controller to ensure that all data on the bus to and in the memory is encrypted. Therefore, it is connected 
to the cache subsystem which issues memory requests (ahb_cache) and the memory controller (ahb_mem). 

The cache subsystem also provides a tweak (tweaki) together with the memory request. The tweak 

together with the secret key (ieekeyi) defines the permutation used for encryption and decryption. 

Therefore, an attacker cannot determine the plaintext associated with a certain ciphertext block without 
knowing the correct key and tweak. The contents of the tweak are passed along with the memory requests 
issued by the processor (tagged transactions) and are defined by NXP-AT’s countermeasures built on top 
of the IEE module (BCFI, EMI, CTM). Attacks within the scope of these modules cannot trigger memory 
requests with a tweak matching the genuine tweak of any protected data in memory. Hence, an attacker 
cannot leak or perform controlled modifications of the protected data. For more information, see the 
architecture description of the modules mentioned above. Finally, the IEE module is connected to the 
Control and Status Registers (CSRs) of the main RV32 core containing the encryption key (ieekey) and 

the top address of the encrypted memory region (mieeencend). These ISA modifications are part of the 

IEE-RV ISA extension and are described in more detail in the Section 3.1.1.5. If the requested memory 
location is greater or equal to the value in the mieeencend CSR, then the memory encryption is bypassed. 

RISC-V Processor

RV32
Core

I Cache D Cache

EMI IEE-RV

BCFI CTM

FCFI

L2 Cache IEE MC Main Memory

AHB

Described Here
Other NXP-AT 
Contributions



Deliverable D3.1 ISOLDE Page: 13 

   

 

D3.1 ISOLDE - public 17.05.2024 

 

 

Figure 3.1.1.4-1: Internal architecture of the IEE module 

The selection of the actual block cipher used in the IEE module depends on the specific use case, 
performance requirements and threat model. More information on the requirements of a suitable block 
cipher in our threat model, which includes logical attacks, is presented in Section 3.1.1.7. 

If the processor design includes caches, then they must be adapted so that the tweak inputs generated by 
NXP AT’s countermeasures are able to propagate from the processor through the cache subsystem to the 
memory encryption engine, where they are needed to form the final encryption tweak. Figure 3.1.1.4-2 
shows the required changes using an L2 cache as example. 

 

Figure 3.1.1.4-2: IEE - Modifications to the L2 cache 

As can be seen in Figure 3.1.1.4-2, an additional tweak input (TI) field was added to the cache line which 

contains outputs of NXP-AT’s countermeasures that should influence the encryption:  

• encl_tweak: Provided by NXP-AT’s EMI module enabling enclave isolation and confidential 

compute.  
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• color, ctm: Provided by NXP-AT’s CTM module defending against exploitation of memory safety 

vulnerabilities.  

• bcfi: Provided by NXP-AT’s BCFI module enabling a cryptographic-isolated shadow stack 

protecting return addresses spilled on the stack.  

• priv: Included to enforce cryptographic isolation of different privilege modes.  

When issuing a memory request to the memory controller these fields are combined to form the final 
encryption tweak as follows (“||” denotes a bitwise concatenation of bit vectors where the most significant 
bit vectors are the leftmost ones):   

tweak = encl_tweak || tagged_addr || bcfi || priv 
  

tagged_addr denotes a CTM-protected address including the color and CTM selection bit (see NXP-AT’s 
CTM module architecture description in Section 3.1.4 for more information).   

The same changes apply for L1 data caches. However, for L1 instruction caches, the TI field will not contain 

the color, ctm and bcfi subfields as the related countermeasures are not relevant for instruction memory, 

instead these fields are hardcoded to 0. The cache modifications also include changes to the cache hit logic 
and replacement policy to guarantee the security claims and ensure correct function:  

• A cache hit only occurs if the Tag and TI field of the cache line match the ones of the memory 

request.  

• A cache miss occurs if the Tag field does not match, or if the Tag field matches and the TI field 

does not. In the second case, the replacement logic must always select the cache line with the 
mismatching TI field as replacement candidate. This behavior avoids cache aliasing where multiple 

cache lines would be associated with the same physical address. Otherwise, cache aliasing could 
lead to inconsistency and security problems.  

Note that the block size of the cipher shall match the minimum access size performed by the cache 
subsystem to avoid unnecessary read-modify-write scenarios. Further, the encrypted region must be 
cacheable if caches are included in the design. Access to non-cacheable regions bypasses the memory 
encryption as such access would come with a higher latency penalty especially for sub-word stores.  

The described redesign of the cache subsystem inflicts a significant overhead in the area consumed by the 
caches because of the large encl_tweak subfield in the TI field. For example, if the cache line size is 32 

byte and 12-bit colors are used the overhead would be 31.25%. However, in practice, the overhead can be 
significantly reduced by storing the enclave tweaks in a separate lookup table and linking them to the 
appropriate cache lines in the TI field instead of including the full enclave tweak. If an enclave tweak in the 

lookup table is replaced in such an implementation, then all cache lines linking to this enclave tweak must 
also be evicted.  

In the described design, other peripherals which function as bus managers apart from the main RV32 core, 
like a Direct Memory Access (DMA) controller, can only exchange data with the main core by operating in 
the unencrypted memory area (greater or equal to mieeencend). These bus managers shall not be able to 

access the encrypted region, and they shall use a special tweak isolated from the tweaks of the main RV32 
core (for example, by using the unused encoding 10 for the priv field), enforcing cryptographic isolation in 

addition. Enabling other bus managers to access an encrypted region requires the trusted software to be 
able to bind them to a security domain (e.g., only a specific enclave can access the peripheral) and provide 
a proper encryption tweak to the peripheral so that it can access a shared encrypted region.  

3.1.1.5 ISA 

The IEE module requires an ISA extension of the RV32 core (IEE-RV) to allow the main processor to 
provide the encryption key and address range where the encryption is active. The next sections describe 
modified and new design parameters, CSRs, instructions, and exceptions introduced by the IEE-RV 
extension. In systems with multiple bus masters the described CSRs shall rather be implemented as 
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memory-mapped registers of the IEE module. Otherwise, the value of the registers might change during 
the operation of the IEE module leading to inconsistency problems. If the CSRs are moved to memory-
mapped registers, then the bus must include appropriate privilege information so that only privileged and 
trusted software of the main core can access these registers. 

Design Parameters 

Parameter  Value  Function  

IEE_ENCRYPTION_BASE  TBD1  Base address of the encrypted 
memory region  

IEE_ENABLE  1  Determines if the Inline Encryption 
Engine module is included in the 
design. If it is not included, then also 
none of the modules based on it can 
be included (NXP-AT’s BCFI, CTM, 
EMI).  

Table 3.1.1.5-1: IEE module design parameters 

CSRs 

CSR  Index  Privilege  Bits  Function  

ieekey0  TBD2  M-RW  31-0  Least Significant Word 
(LSW) of the key for memory 
encryption  

ieekey1  TBD2  M-RW  31-0  32-bits of the key for memory 
encryption  

ieekey2  TBD2   M-RW  31-0  32-bits of the key for memory 
encryption  

ieekey3  TBD2   M-RW  31-0  Most Significant Word 
(MSW) of the key for memory 
encryption  

mieeencend  TBD2   M-RW  

  

31-0  One byte beyond the last 
address of the encrypted 
memory region  

uieeencend  TBD2  U-R  

  

31-0  User-mode read-only alias of 
mieeencend  

(if, e.g., allocator needs this 
info)  

 

 

1 This parameter depends on the memory map of the system to which the IEE module should be added. 

2 These indices depend on the free CSR addresses in the processor to which the IEE-RV extension should 
be added. 
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Table 3.1.1.5-2: CSRs added by the IEE-RV module. 

Note that writes to these CSRs should only be retired after flushing the pipeline and after all pending 
memory operations are completed. Otherwise, memory access by subsequent instructions may 
unintentionally still use the previous configuration or pending memory access might already use the new 
configuration. Both scenarios lead to a bypass of the cryptographic isolation in the worst case. 

3.1.1.6 Interfaces 

The IEE module uses the same interface as used to connect the L2 cache and memory controller (e.g., 
AHB). Additionally, the L2 cache provides the tweak inputs to the IEE module. 

3.1.1.7 Sub-Modules 

The IEE module requires a suitable implementation of a tweakable low-latency block cipher. The 
requirements for suitable schemes are described in the following section. 

Tweakable Low Latency Block Cipher 

A tweakable low-latency block cipher suitable for our threat model including logical attacks shall fulfill the 
following requirements:  

• The block size shall match the minimal access size performed by the cache subsystem (if the 
design includes caches) but shall be at least 32-bit.   

• The algorithm shall provide 128-bit security against key recovery.  

• The tweak shall be large enough to accommodate the previously described tweak inputs 
(depending on which countermeasures are included) and provide security against online tweak 
recovery.  

• The block cipher shall be non-malleable.  

• The acceptable latency of the encryption and decryption operations depends on the performance 
requirements. If the design includes caches (especially a last-level cache with write-back policy), 
then the IEE has less impact on performance as not every memory access has to pass through the 
memory encryption engine. Hence, in this case the latency requirements can be more relaxed.  

Depending on the performance requirements and additional security requirements (e.g., integrity protection) 
solutions built on top of different block ciphers, for example, PRINCEv2 [Božilov2020], 
QUARMAv2 [Avanzi2023] or ASCON [Dobraunig2016] can be built.  

3.1.1.8 Clocking Strategy 

The IEE wrapper and included block cipher clock frequency depend on the latency requirements for 
memory encryption and decryption. 

3.1.1.9 Reset Strategy 

The IEE module uses the same reset line as the memory controller. 

3.1.1.10 Power Management Strategy 

If the memory controller and its connected memory are power gated or going to a power saving mode, then 
likewise the IEE module can do so. 
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3.1.1.11 Debugging Strategy 

The RISC-V processor’s debug module shall be limited to accessing the memory from a hart’s point of view 
using the program buffer and not via the system bus access if the IEE module is included in the design. 
The system bus access mode cannot provide the appropriate tweaks as they depend on the state of the 
RV32 core. Hence, loads and stores with addresses in the encrypted region would lead to wrong results. 
Even if memory is accessed via the program buffer, the RV32 core must still be in an appropriate state. For 
example, if a user wants to access a memory location related to Enclave 2, then debug mode must have 
been entered from Enclave 2, or the debugger must have set the appropriate enclave modifiers.  

Suppose the RV32 core is in debug mode. In that case, the memory encryption engine shall be bypassed 
for instruction fetches to allow normal execution of the debug ROM and instructions in the debug program 
buffer. Further, the debugger must set the memory access privilege to the privilege mode the hart was 
executing in before entering debug mode. Otherwise, the memory encryption tweaks will not match the 
current state of the art. Hence, the debug module implementation must not tie dcsr.mprven to 0

 [Donahue2024]. Then, the debug translator can set the proper memory access privilege by performing the 
following sequence after entering debug mode:  

1. Set dcsr.mprven to 1 (if not fixed).  

2. If dcsr.prv is M and mstatus.mprv is set, skip the following steps.  

3. Back up the state of the mstatus.mprv and mstatus.mpp fields.  

4. Set mstatus.mprv to 1 and mstatus.mpp to dcsr.prv.  

When returning from debug mode, the debug translator shall restore the mstatus.mprv and mstatus.mpp 

field values.  

Additionally, if the debug translator wants to modify text sections (e.g., for inserting software breakpoints), 
it must follow these steps:  

1. Back up the value of the effective enclave store modifier selected using the dcsr.prv field (see 

also the architecture description of NXP-AT’s EMI module in Section 3.1.5).  
2. Set the effective enclave store modifier to 0.  
3. Perform the necessary changes in the instruction memory region.  
4. Restore the effective enclave store modifier.  

As mentioned above, the core must be in an appropriate state to correctly access memory, which also 
applies to instruction memory. Alternatively, the user can add hardware breakpoints implemented using the 
trigger module. Those are directly compatible with NXP-AT’s IEE module without changes.  
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3.1.2 Backward-Edge Control Flow Integrity (BCFI) – NXP-AT 

Part of Task 3.1 Safety & Security Modules. 

3.1.2.1 General Information  

According to Google Project Zero, memory corruption vulnerabilities are the most used path to gain 
unintended remote control over digital devices [GoogleProjectZero2024]. In 2023, 75% of zero-day exploits 
in the wild were based on memory corruption vulnerabilities. Programming languages like C and C++ that 
offer neither memory nor type safety are especially affected. While memory-safe programming languages 
(like Rust) gain momentum, C is still one of the most popular programming languages [Cass2022], 
especially for embedded system development. Making matters worse, constrained embedded 
environments include only subsets of the defense mechanisms employed in larger systems (e.g., no 
address space layout randomization or low entropy), leading to easier exploitation. Hence, during the 
transition period to memory-safe programming languages or for legacy code, additional security layers are 
needed to mitigate these attack paths, especially for constrained embedded devices. 

3.1.2.2 Purpose and Scope  

The exploitation of memory safety vulnerabilities allows an attacker to unintendedly corrupt, or leak program 
data. On the one hand, introducing malicious changes may enable an attacker to modify the program 
behavior and take over control. On the other hand, unintended leakage of data may lead to the attacker 
learning sensitive information like the value of cryptographic keys. Memory safety vulnerabilities can be 
separated into spatial bugs (out-of-bound reads and writes) and temporal bugs (reusing a dangling pointer 
after the associated memory block was given back to the allocator).  

One typical target of exploits arising from memory safety issues are return addresses spilled on the stack 
as modifying them allows the attacker to jump to any wanted address. Such exploits, which aim to modify 
the backward-edge control flow of programs, are among the most common and known ones. The typical 
attack path is to exploit wrong or missing bounds checks of a user-controllable input that is written to a 
buffer on the stack leading to overwritten stack contents including return addresses. Early attacks overwrote 
the return address and injected the attacker code on the stack, jumping to the injected code using the 
modified return address.  

Subsequent countermeasures, like W^X (no execution of writeable memory regions), resulted in more 
advanced attack techniques like return-to-libc, Return-Oriented Programming (ROP), Jump-Oriented 
Programming (JOP), or Call-Oriented Programming (COP). These attacks do not inject shellcode crafted 
by an attacker, but instead chain together available gadgets (snippets of code useful for the attacker) in the 
victim’s instruction memory to achieve the attacker’s goal. 

Modern operating systems include more advanced countermeasures like stack canaries and Address 
Space Layout Randomization (ASLR) to increase the resilience regarding these advanced attack types. 
Stack canaries aim to protect return addresses from buffer overflows by inserting a unique value between 
the function data and the saved return address on the stack. The canary will be overwritten if the attacker 
tries to overwrite the return value by exploiting a buffer overflow. As the canary value is compared to the 
expected one in the function epilogue, the attack is detected before returning from the function. ASLR 
randomizes the start location of a program’s address space portions (code, stack, heap, libraries). This 
randomization hides addresses of useful gadgets from an attacker leading to probabilistic mitigation.  

Still, all these countermeasures have weaknesses. Stack canaries do not help against an attacker with an 
arbitrary write primitive, as the canary can just be skipped. ASLR may not be available on 32-bit embedded 
systems or has low entropy there. Further, both are vulnerable to information disclosure attacks.  

Hence, shadow stacks were invented as a stronger alternative. A shadow stack duplicates all return 
addresses on the regular stack in a separate isolated memory region. The isolation guarantees that only 
special instructions can access the shadow stack while regular memory operations cannot access it. 
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Therefore, an attack can only overwrite return addresses on the regular stack, but not on the shadow stack. 
Before executing the return in the function epilogue, the return address from the regular stack is compared 
with the return address on the shadow stack. If they do not match, then an attack is detected, and the 
execution terminates with an appropriate exception. RISC-V International specified a shadow stack design 
for RISC-V in the Zicfiss extension [RV-SS-LP-TG2024]. 

The shadow stack specified in Zicfiss requires that the processor includes a MMU to realize the isolation 
and hence may not be suitable for small 32-bit platforms (microcontrollers). Instead, our BCFI module 
isolates the shadow stack cryptographically using a tweakable memory encryption engine like NXP-AT’s 
IEE module (Section 3.1.1). Such an approach is beneficial for systems which already include a memory 
encryption engine to fulfil their security requirements. Then, this memory encryption can be reused to 
implement a shadow stack at little additional cost. Shadow stack operations use encryption tweaks different 
from other memory operations to implement the before mentioned isolation cryptographically. However, 
while encrypting the shadow stack with tweaks different to other memory regions could be already achieved 
by using NXP-AT’s CTM module (Section 3.1.4), it is not sufficient against all attack scenarios. For example, 
even if the encryption additionally depends on the physical address, an attacker can still exchange return 
addresses located at the same stack depth (physical address) but recorded at different points in time.  

Therefore, our approach is an adoption of the scheme proposed by the PACStack paper [Liljestrand2021]. 
At every function call, the return address is used to update a hash value stored in an isolated register 
(sstca). The intermediate hash values are spilled to the stack (plus encrypted by the BCFI-specific memory 

encryption) instead of the return addresses. For the hash computation we use an invertible universal hash 
function (UHF and its inverse IUHF). Hence, knowing the topmost hash value and the intermediate hash 

values, the return addresses can be reconstructed in the function epilogues. The topmost hash value 
represents all return addresses on the stack, i.e., if any return address would change, then this change 
would lead to a statically unique topmost hash value. Therefore, any successful attack would require either 
modifying the topmost hash value or a value on the shadow stack in a controlled way, both are not feasible 
(mitigated by the isolated register and the memory encryption respectively). If an attacker still attempts to 
modify a value on the shadow stack, then the resulting return address will be random, and the attack will 
be detected as it does not match the value on the regular stack. This concept is illustrated in the Figure 
3.1.2.2-1. 

 

Figure 3.1.2.2-1: BCFI - Cryptographically isolated shadow stack 
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Note that instead of duplicating the return addresses, they can only be stored on the shadow stack resulting 
in no memory overhead (also called control stack mode). However, then attacks cannot be detected 
anymore, instead the reconstructed return address will be random and likely lead to a fault preventing 
exploitation. 

3.1.2.3 Place in the System 

The BCFI module is an ISA extension for RV32 cores as can be seen in Figure 3.1.2.3-1. Further, it requires 
changes to the cache architecture and depends on a suitable tweakable memory encryption engine. These 
contributions are not described here, but in the section describing NXP-AT’s IEE module (Section 3.1.1).  

 

Figure 3.1.2.3-1: Overview of the BCFI module in the system 

3.1.2.4 Block Diagram 

Figure 3.1.2.4-1 shows the internal architecture of the BCFI module. The figure also indicates to which 
pipeline stages and modules inside the RV32 core the BCFI module will be connected. The description 
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Figure 3.1.2.4-1: Internal architecture of the BCFI module 

The BCFI module extends the ISA of the RV32 core with multiple instructions, listed in the tables below. 
The corresponding operations are added to the normal Arithmetic Logic Unit (ALU) which gets its inputs 
from the Execute Stage (every instruction except for sslw and sspopchck - see Table 3.1.2.5-4), or the 

late ALU, which gets its inputs from the Exception Stage as one of the operands must be loaded from 
memory (for sslw and sspopchck). Further inputs come from the CSRs related to the shadow stack 

operation (ssp, sstca, mieeencend, mseccfg, menvcfg and senvcfg). The regular ALU must contain a 

module for universal hashing (UHF) and the late ALU a module for computing the inverse (IUHF) required 

for the hashing and reconstruction of the return addresses. The ALUs output an updated shadow stack 
state (sspno, sstcano) and an output value (resulto) which are passed to the next stage. Additionally, 

an error signal (bcfi_op_erroro) is asserted if a security check fails. The error signal will lead to the 

processor jumping to an appropriate exception handler. For a detailed description of the BCFI instructions 
and other ISA changes refer to the next section.   

3.1.2.5 ISA 

The BCFI module extends the ISA of the base RV32 core. The next sections describe modified and new 
design parameters, CSRs, instructions, and exceptions. In the following, BLEN denotes the block size of 
the memory encryption in bits (see also the description of NXP-AT’s IEE module in Section 3.1.1). Note 
that the referenced IEE_ENCRYPTION_BASE design parameter and mieeencend CSR are part of NXP-AT’s 

IEE module and described there. The instruction encodings and assembly syntax match the one defined 
by the official Zicfiss extension [RV-SS-LP-TG2024] allowing compilers supporting this extension being 
reused for our cryptographically isolated shadow stack. Note that the instructions required for control stack 
mode (sslw, ssincp) match version 0.3.1 of the Zicfiss extension [RV-SS-LP-TG2023] which was the 

current version at the time of development. The ratification of control stack mode has been postponed in 
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favour of a simpler and easier to ratify first version of the extension, but the control stack is expected to be 
ratified with the next update.  

 

Design Parameters 

Parameter  Default Value  Function  

BCFI_ENABLE  1  Determines if the BCFI module is 

included in the design.  

Table 3.1.2.5-1: BCFI module design parameters 

CSRs 

In the following tables, the privilege column gives the minimum required privilege mode (first letter) to 
access the CSR and which access types are allowed (last two letters). For example, M-RW means M-mode 
has read and write access, but lower privilege modes have no access.  

CSR  Index  Privilege  Bits  Function  

ssp  0x011  U-RW   31-0  Shadow Stack Pointer  

sstca3  TBD4 U-RW   (BLEN-
1)-0  

Topmost Chained Address  

(topmost hash value)  

ssuhfx3  TBD4 M-RW  (BLEN-
1)-0  

Parameter X of UHF  

ssuhfxinv3  TBD4  M-RW  (BLEN-
1)-0  

Parameter X-1 of IUHF  

Table 3.1.2.5-2: CSRs added by the BCFI module. 

The access conditions for ssp and sstca further depend on the state of the BFCI module (enabled, disabled) 

in the current privilege level. If BCFI is disabled, then access to these CSRs raises an 
IllegalInstruction exception. 

CSR  Index  Privilege   Field   Bit(s)  Function  

mseccfg  0x747  M-RW  SSUP  3  M-mode shadow stack grows in upward 
direction.  

SSCHK  4  If set, then ssp < sp is asserted at 

instructions accessing the regular stack or 
the shadow stack in M mode. Only 
meaningful if SSUP is also set.  

 

 

3 May require multiple CSRs depending on BLEN but represented as single CSR as simplification. 

4 These indices depend on the free CSR addresses in the processor to which the BCFI module should be 
added. 
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menvcfg  0x30A  M-RW  SSE  3  Shadow stack enabled in S mode   

SSUP  8  S-mode shadow stack grows in upward 
direction.  

SSCHK  9  If this flag and MENVCFG.SSE are set, then 

ssp < sp is asserted at instructions 

accessing the regular stack or the shadow 
stack in S mode. Only meaningful if SSUP is 

also set.  

senvcfg  0x10A  S-RW  SSE  3  Shadow stack enabled in U mode  

SSUP  8  U-mode shadow stack grows in upward 
direction.  

SSCHK  9  If this flag and SENVCFG.SSE are set, then 

ssp < sp is asserted at instructions 

accessing the regular stack or the shadow 
stack in U mode. Only meaningful if SSUP is 

also set.  

Table 3.1.2.5-3: CSRs modified by the BCFI module. 

Note that the shadow stack is always enabled in M mode. SSUP allows to place the regular stack and the 

shadow stack in the same memory region growing towards each other. Additionally, SSCHK can be used to 

detect when the stacks overlap in this scenario.  

The ssp < sp assertion only works correctly if the executed code complies with the RISC-V (E)ABI 

[RVI2024] (sp is at least 8-byte aligned, sp is mapped to register x2, sp offsets are only positive). If xSSCHK 

is enabled, then an implementation can optionally assert that sp (x2) is 8-byte aligned and that offsets of 

memory operations using sp (x2) are positive. If any of the above-described assertions fails, a 

SoftwareCheck exception (xCAUSE=18, xTVAL=4) shall be raised.  

Instructions 

All memory accesses performed by the operations of the BCFI module set the BCFI flag in the tweak 
propagated to the memory encryption engine to isolate them from all other memory operations. For more 
information, see the description of NXP-AT’s IEE module (Section 3.1.1). Note that shadow stacks must be 
aligned to the cache line size as the IEE module stores tweaks at a cache line granularity. The following 
operation description makes use of the symbol “…” to denote a slice of memory, i.e., memory[start … end] 
denotes the byte range in memory starting with start until (exclusive) end (like slices in Python). Note that 
all BCFI memory accesses must be BLEN/8-aligned, otherwise a StoreAccessFault exception should be 

raised. 

 

Instruction  Operation  

sspush rs      (rs={x1,x5})  

c.sspush       (rs=x1)  
 
Push to shadow stack  

if (xSSE = 1)  
{      
  addr = xSSUP ? ssp + (BLEN / 8) : ssp - (BLEN / 8)  
  if (is_access_outside_iee_region(addr, BLEN / 8))  
  {  
    /* xCAUSE=18, xTVAL=5 */   
    raise SoftwareCheckException(5)   
  }  
  memory[addr … addr + (BLEN / 8)] = sstca  
  t = UHF(rs, sstca)  
  /* only at retirement */  
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  sstca = t  
  ssp = addr  
}  

sslw rd        (rd={x1,x5})  
 
Load from shadow stack  

if (xSSE = 1)  
{  
  addr = ssp  
  if (is_access_outside_iee_region(addr, BLEN / 8))  
  {  
    /* xCAUSE=18, xTVAL=5 */   
    raise SoftwareCheckException(5)   
  }  
  t = memory[addr … addr + (BLEN / 8)]  
  rd = IUHF(sstca, t)  
  /* only at retirement */  
  sstca = t  
}  
else   
{  
  /* Zimop default behavior */  
  rd = 0  
}  

ssincp   
c.ssincp  
 
Increase shadow stack 
pointer  

if (xSSE= 1)  
{  
  ssp = xSSUP ? ssp - (BLEN / 8) : ssp + (BLEN / 8)  
}  

sspopchk rs    (rs={x1,x5})  
c.sspopchk     (rs=x5)  
 

Pop from shadow stack and 
compare with link register  

if (xSSE = 1)  
{  
  addr = ssp  
  if (is_access_outside_iee_region(addr, BLEN / 8))  
  {  
    /* xCAUSE=18, xTVAL=5 */   
    raise SoftwareCheckException(5)   
  }  
  t1 = memory[addr … addr + (BLEN / 8)]  
  t2 = IUHF(sstca, t1)  
  if (t2 != rs)  
  {  
    /* xCAUSE=18, xTVAL=3 */   
    raise SoftwareCheckException(3)   
    /* trap handler might restart instruction! */  
  }  
  /* only at retirement */  
  sstca = t1  
  ssp = xSSUP ? ssp - (BLEN / 8) : ssp + (BLEN / 8)  
}  

ssrdp rd   
 
Read ssp into a register  
  

if (xSSE = 1)  
{  
  rd = ssp  
}  
else   
{  
  /* Zimop default behavior */  
  rd = 0  
}  

ssamoswap.w rd, rs2, (rs1)  

Atomic swap from shadow 
stack location   

  

if (xSSE = 1)  
{  
  addr = rs1  
  if (is_access_outside_iee_region(addr, BLEN / 8))  
  {  
    /* xCAUSE=18, xTVAL=5 */   
    raise SoftwareCheckException(5)   
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  }  
  /* perform atomically with sequential consistency */  
  rd = memory[addr … addr + (BLEN / 8)]  
  memory[addr … addr + (BLEN / 8)] = rs2  
}  
else   
{  
  /* xCAUSE=2 */  
  raise IllegalInstructionException   
}  

Table 3.1.2.5-4: Instructions added by the BCFI module. 

ssamoswap behaves like a regular amoswap.w, but it sets the BCFI flag in the memory encryption tweak.  
 
The Table 3.1.2.5-4 refers to xSSE, xSSCHK, xSSUP and the function is_access_outside_iee_region() 
which are defined below:  
 

xSSE =   
{  
  if (in M mode)  
     return 1  
  /* below M mode */  
  else if (menvcfg.SSE == 0)  
     return 0  
  /* below S mode */  
  else if (S mode implemented && in U mode && senvcfg. SSE == 0)  
    return 0    
  else  
    return 1  
}  
  
xSSCHK =   
{  
  if (xSSE == 0)  
     return 0  
  if (in M mode)  
     return mseccfg. SSCHK  
  else if (in S mode)  
     return menvcfg. SSCHK  
  else if (in U mode)  
     return (S mode implemented) ? senvcfg.SSCHK : menvcfg. SSCHK  
}  
  
xSSUP =   
{  
  if (in M mode)  
     return mseccfg.SSUP  
  else if (in S mode)  
     return menvcfg.SSUP  
  else if (in U mode)  
     return (S mode implemented) ? senvcfg.SSUP : menvcfg. SSUP  
}  
  
is_access_outside_iee_region(addr, size)  
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{  
  access_last_offset = size - 1      
  access_last = addr + access_last_offset  
  if ((addr >= IEE_ENCRYPTION_BASE) && (access_last < mieeencend))  
    return false  
  return true  
}  
 

Exceptions 

Exception  Code  Description  

SoftwareCheckException  18  Synchronous exception which is triggered when there are 
violations of checks and assertions with regards to the integrity 
of software assets. The exact cause can be determined by 
examining the xTVAL register:  

• 3: Raised when sspopchk detects a tampered return 

address.  

• 4: Raised when the regular stack and shadow stack 
overlap (ssp >= sp).   

• 5: Raised when a shadow stack operation attempts to 
access memory outside the encrypted region.   

Table 3.1.2.5-5: Exceptions causes added by the BCFI module. 

3.1.2.6 Sub-Modules 

The BCFI module requires submodules implementing a universal hash function (UHF) and its inverse 
(IUHF). The requirements for these modules are described in the following subsections. 

UFH 

The UHF module must fulfill the following requirements:  

• The UHF module shall allow updating the 32-bit hash state by taking the previous 32-bit hash state 
and a 32-bit message (i.e., return value) as inputs. The updated hash state shall be available at 
the output.  

• The UHF shall be parameterizable using the ssuhfx CSR.  

• The UHF shall have a collision resistance close to the theoretical bound given by the birthday 
paradox. 

IUHF 

The IUHF module must fulfill the following requirements: 

• The IUHF module shall allow to reconstruct the 32-bit message from the corresponding and 
previous 32-bit hash state. 

• The IUHF shall be parameterizable using the ssuhfxinv CSR. 

3.1.2.7 Debugging Strategy 

The RISC-V debug module and NXP-AT’s IEE module must be configured in the right way to enable correct 
debug functionality in the presence of the memory encryption engine required for the BCFI module. For 
more information, see the specification of NXP-AT’s IEE module (Section 3.1.1).  
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Additionally, toolchain support is beneficial in control stack model to allow the debugger to unwind the stack 
correctly.  
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3.1.3 Context-Aware Performance Monitor Counter (CA-PMC) – TRT 

Part of Task 3.1 Safety & Security Modules. 

3.1.3.1 General Information 

The Context Aware Monitoring framework is a set of IPs to enhance the monitoring IPs with context 
information and standardize the same monitoring IPs deployed in a system on a chip (SoC). The context 
information is typically defined by a context controller which typically is a core defining the context in which 
the events monitored are issued. The Context Aware Monitoring framework is composed of 4 different IPs 
(or IPs extensions): the CA-CORE, the CA-BUS, the CA-PMC (described in this section), and the CA-PMC-
IF (Section 3.3.1).  

3.1.3.2 Purpose and Scope 

The CA-PMC's purpose, as a regular Performance Monitor Counter, is to count events of some kind (e.g., 
cache misses, cache hits, etc.), but providing means of filtering the counted events on some system defined 
context.  

The CA-PMC implementation is highly dependent on the IP (e.g., cache) the CA-PMC is integrated in, but 
at minimum, in addition to the counter register it should have a register to store the context that should be 
used for filtering the events. The IP integrating the CA-PMC should have also the means to receive the 
context of the event from the source generating the event (e.g., cache read access), so the IP can transfer 
the event with the associated context to the CA-PMC.  

In the context of ISOLDE, we will target the SoC caches as IP integrating the CA-PMC (and CA-PMC-IF to 
configure the CA-PMC and retrieve data from the CA-PMC).  

3.1.3.3 Place in the System 

The CA-PMCs are extended Performance Monitoring Counters to be placed in the different IPs of the 
system, as shown in the example Figure 3.1.3.3-1. They count the different events produced in the IP in 
dedicated registers. Unlike regular PMCs which count all the events that happen in the IP (e.g., all cache 
misses in a cache), the CA-PMCs allow the events to be filtered by a context. The actual meaning of the 
context depends on how the system is configured, but typically the context will refer to the initiator of the 
request that caused the event on the IP (e.g., the process that caused the cache miss event).  

The CA-PMC only performs the event counting logic, configuration of the CA-PMC and reading of its event 
counting registers is performed through the CA-PMC-IF module (Section 3.3.1). 
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Figure 3.1.3.3-1: CA-PMC - Place in the Context Aware Monitoring infrastructure system 

In the project's context, the Instruction and Data L1 Caches CA-PMCs will be targeted. Additional CA-PMCs 
might be developed be developed if time and effort are available. 

3.1.3.4 Block Diagram 

Figure 3.1.3.4-1 shows a high-level and preliminary view of the CA-PMC block diagram inside an L1 cache, 
but it could be any other IP, and how it is connected to the CA-PMC-IF module (Section 3.3.1) and the IP 
internals. The CA-PMC has multiple counter registers to monitor the events from the IP and can receive 
signals from the IP being monitored and the CA-PMC-IF module. Associated to each counter register there 
is a configuration register that defines: 

• if the counter is active or not, 

• which is the event that the counter register monitors, 

• and which is the context to monitor. 

A logic in front of each counter register manages the update of the counter register depending on the IP 
incoming event and associated context. If the incoming event id and context match the configuration register 
values, the counter register is updated. The configuration register and the counter register provide 
interfaces for the CA-PMC-IF module for reading and writing them. Based on this basic design enhanced 
implementations can be developed providing new functionalities like threshold configuration to generate 
interrupts when a counter reaches a value. 
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Figure 3.1.3.4-1: CA-PMC - Block diagram 

3.1.3.5 Interfaces 

The CA-PMC is connected with two different IPs (see Figure 3.1.3.4-1):  

• A CA-PMC-IF module (Section 3.3.1) enabling the CA-PMC configuration and the read of the 
counter registers it contains, and 

• the IP being monitored. 

CA-PMC and monitored IP 

Communication happens from the monitored IP to the CA-PMC. A basic interface defines N bit sized 
connections, one for each type of event the IP can generate, and a context-sized connection indicating the 
context of the request that generated the event. Both connections are clock synchronized.  

IPs that can generate multiple events during the same cycle will require a queue to provide the events 
sequentially to the CA-PMC.  

CA-PMC and CA-PMC-IF 

A register write/read interface controlled by the CA-PMC-IF is required between the CA-PMC-IF and the 
CA-PMC. 

3.1.3.6 Reset Strategy 

At system reset the CA-PMC configuration registers should be initialized to not monitor any event. CA-PMC 
counter registers should be initialized to a default value (zero).  
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3.1.4 Cryptographically Tagged Memory (CTM) – NXP-AT 

Part of Task 3.1 Safety & Security Modules. 

3.1.4.1 Purpose and Scope 

As explained in Section 3.1.2, memory corruption vulnerabilities are the most used path to gain remote 
control over digital devices. In Section 3.1.2, we introduced the BCFI module that helps to counter attackers 
exploiting memory safety issues to modify return addresses spilled on the stack. However, there are also 
other assets located on the stack, heap, or in global objects that are of interest to attackers, such as:  

• Function pointers   

• Values indirectly affecting the control flow (e.g., evaluated in conditional branches)  

• Sensitive data like cryptographic keys  

Fine-grained protection of such assets within the context of one task surpasses the capability of traditional 
protection measures like memory protection or management units. Memory tagging can be used to 
minimize this gap. It assigns additional metadata, the color, with memory blocks of a defined size. Every 
genuine pointer and its associated memory blocks are assigned the same statistically unique color at 
memory allocation. Therefore, only the designated pointer received from the allocator can be used to 
access the allocated data. This lock-and-key mechanism prevents out-of-bound accesses (spatial bugs) 
using another pointer or accesses using a dangling pointer (temporal bugs) as shown in Figure 3.1.4.1-1.   

 

Figure 3.1.4.1-1: CTM - Memory tagging overview (top: out-of-bounds access, bottom: use-after-free) 

Note that the colors must be stored additionally to the rest of the data increasing the overall memory usage. 
Therefore, existing memory tagging implementations, like Armv8.5-A MTE [arm2024], allocated only few 
bits for the colors, making them unsuitable for security purposes. Cryptographically tagged 
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memory [Nasahl2021] avoids this additional memory overhead by implicitly linking memory blocks with the 
genuine color. This implicit association is achieved by including the color in the tweak for memory encryption 
and decryption. Hence, this technique allows to use more bits for the color without increasing the memory 
overhead if a memory encryption engine is available. The major behavioral difference to the original scheme 

is that an attacker can still misuse pointers to access unintended memory blocks5. However, it is much 
harder to perform a successful attack as accesses triggered from a misused pointer will not be useful:  

• Suppose misusing a pointer triggers an out-of-bounds read. Then, the decryption results are wrong 
as the color does not match ensuring the confidentiality of the corresponding data.  

• Suppose misusing a pointer triggers an out-of-bounds write. Then, the color of the genuine pointer 
will not match the one of the misused pointers. Hence, the attacker cannot modify the data in a 
controlled way.  

Until now, cryptographically tagged memory has only been applied to 64-bit processors where the designers 
used unimplemented bits in the virtual address space to store the colors. The CTM module adds 
cryptographically tagged memory to 32-bit processors without introducing the requirement of a memory 
management unit. The smaller address space poses additional challenges as no unused bits in pointers 
are available, and therefore, we developed a different strategy to include the colors in the pointer.  

3.1.4.2 Place in the System 

The CTM module is an ISA extension for RV32 cores without a MMU (microcontrollers) as can be seen in 
Figure 3.1.4.2-1. Further, it requires changes to the cache architecture and depends on a suitable 
tweakable memory encryption engine. These contributions are not described here, but in the section 
describing NXP-AT’s IEE module (Section 3.1.1). 

 

Figure 3.1.4.2-1: Overview of the CTM module in the system 

3.1.4.3 Block Diagram 

Figure 3.1.4.3-1 shows the internal architecture of the CTM module. The figure also indicates to which 
pipeline stages and modules inside the RV32 core the CTM module will be connected. The description 

 

 

5 In addition, such scheme can easily be turned into one which prevents the attacker from misusing pointers 
by using authenticated encryption, however, then again, additional storage is needed for storing the tags. 
Nevertheless, this might be already present.  
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assumes that the base core has 7 pipeline stages (instruction fetch, decode, register access, execute, 
memory, exception, write-back). 

 

Figure 3.1.4.3-1: Internal architecture of the CTM module 

The CTM module extends the ISA of the RV32 core with two instructions (ctmtag, ctmuntag). ctmtag adds 

a color to a pointer and ctmuntag removes a color from a tagged pointer. These new operations are 

depicted by the ALU symbol in Figure 3.1.4.3-1. The CTM module also includes a Pseudo-Random Number 
Generator (PRNG) as the colors should be statistically unique. Note that users can only assign colors to 
memory blocks with a size and alignment matching the cache line size. Hence, allocators must assure that 
the allocated region has the correct alignment and size, else the instructions will raise an exception. For 
more detailed information about the behavior of these instructions, see Section 3.1.4.4. 

Further, if the CTM module is present, the RV32 core performs additional steps before memory requests 
are passed to the cache controller. As shown in Figure 3.1.4.3-1, the following steps are performed for 
CTM-protected addresses (bit at position CTM_EXPLICIT_SELECTION_BIT is set):  

• The CTM module extracts the color and raw address (without color and bit at position 
CTM_EXPLICIT_SELECTION_BIT) from the address received from the LD/ST unit. It recomputes the 

address for the memory request as the raw address plus the CTM_EXPLICIT_REGION_OFFSET 

constant. The determined CTM state (ctmo), color (coloro) and address (addro) serve as input 

for the cache controller.  

• The module checks if the raw address lies outside the memory region where memory encryption is 
active (above or equal to the value in the mieeencend CSR). If so, then it reports an error as CTM 

cannot protect memory blocks that do not go through the memory encryption engine.  
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For more information about the CTM_EXPLICIT_SELECTION_BIT and CTM_EXPLICIT_REGION_OFFSET 

constants, see Section 3.1.4.4. 

The cache subsystem may hand over the memory access request to the main memory and its encryption 
engine. The tweak used by the memory encryption engine will include the forwarded color. After the request 
is completed, the color will be stored in the cache line alongside the decrypted data. For more information 
about the changes to the cache subsystem and the memory encryption engine, see NXP-AT's IEE module 
(Section 3.1.1).   

3.1.4.4 ISA 

The CTM module extends the ISA of the RV32 core. The next sections describe modified and new design 
parameters, CSRs, instructions, and exceptions. In the following, L denotes the cache line size used in the 
processor (either 32 or 64 bytes) and rand() indicates a value read from the PRNG. Note that the referenced 
mieeencend CSR is part of NXP-AT’s IEE module and described there.  

Design Parameters 

Parameter  Default Value  Function  

CTM_EXPLICIT_SELECTION_BIT  TBD6  Indicates which address bit selects 
between tagged and untagged 
pointers. The chosen address bit 
must not be used in the memory map 
of the processor.  

CTM_EXPLICIT_REGION_OFFSET  

  

TBD6  This value is ORed to the untagged 
address (replacing the zeroed color 
bits) before a memory access is 
performed. Hence, it can be used to 
move the start address of the CTM-
protected region.  

CTM_TAG_MASK  TBD6  Mask to indicate which address bits of 
a tagged pointer contain the color 
bits.  

CTM_ENABLE  1  Determines if the Cryptographically 
Tagged Memory module is included 
in the design.  

Table 3.1.4.4-1: CTM module design parameters 

CSRs 

In the following table, the privilege column gives the minimum required privilege mode (first letter) to access 
the CSR and which access types are allowed (last two letters). For example, M-RW means M-mode has 
read and write access, but lower privilege modes have no access.  

 

 

 

 

6 These parameters depend on the memory map of the system to which the CTM module should be added. 



Deliverable D3.1 ISOLDE Page: 35 

   

 

D3.1 ISOLDE - public 17.05.2024 

 

CSR  Index  Privilege   Field   Bit(s)  Function  

 mseccfg  0x747  M-RW  CTME  5  CTM enable for all privilege modes  

Table 3.1.4.4-2: CSRs modified by the CTM module. 

Instructions 

Instruction  Function  

ctmtag rd, rs  
 
Adds a random color to the value in 
rs and stores the result in rd.  
  

if (mseccfg.CTME == 0) {  
  /* xCAUSE=2 */  
  raise IllegalInstructionException  
}  
  
if (rs & (1 << CTM_EXPLICIT_SELECTION_BIT) ||   
    rs & (L-1) != 0)  
{  
  /* xCAUSE=18, xTVAL=11 */  
  raise SoftwareCheckException(11)  
}  
  
if ((rs & CTM_TAG_MASK) != CTM_EXPLICIT_REGION_OFFSET ||          
     rs >= mieeencend)  
{  
  /* xCAUSE=18, xTVAL=10 */  
  raise SoftwareCheckException(10)  
}  
  
rd = (rs & ~ CTM_TAG_MASK) | (rand() & CTM_TAG_MASK) |   
     (1 << CTM_EXPLICIT_SELECTION_BIT)  

ctmuntag rd, rs  
  
Removes the color from the value in 
rs and stores the result in rd.   
  

if (mseccfg.CTME == 0)  
{  
  /* xCAUSE=2 */  
  raise IllegalInstructionException  
}  
  
if (rs & (1 << CTM_EXPLICIT_SELECTION_BIT))  
{  
  addr = rs & ~(1 << CTM_EXPLICIT_SELECTION_BIT)  
  addr &= ~CTM_TAG_MASK   
  addr |= CTM_EXPLICIT_REGION_OFFSET  
}  
else   
{  
  /* xCAUSE=18, xTVAL=12 */  
  raise SoftwareCheckException(12)  
}  
if (addr >= mieeencend)  
{  
  /* xCAUSE=18, xTVAL=10 */  
  raise SoftwareCheckException(10)  
}  
  
rd = addr  

Table 3.1.4.4-3: Instructions added by the CTM module. 

Exceptions 

Exception  Code  Description  

SoftwareCheckException  18  Synchronous exception which is triggered when there are 
violations of checks and assertions regarding to the integrity of 
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software assets. The exact cause can be determined by 
examining the xTVAL register:  

• 10: Raised if a to-be-tagged (ctmtag) or untagged 

(ctmuntag, memory operations) address points to 

memory outside the defined CTM region.  

• 11: Raised by ctmtag if the address in rs is already 

tagged or not correctly aligned.  

• 12: Raised by ctmuntag if the address in rs is not 

tagged.  

Table 3.1.4.4-4: Exceptions causes added by the CTM module. 

3.1.4.5 Sub-Modules 

The CTM module requires the availability of a PRNG. 

PRNG 

The CTM module includes a PRNG for generating the colors needed for the tagging of pointers. The PRNG 
must fulfill the following requirements:  

• The entropy should at least match the (configurable) color size so that the probability of neighboring 
memory blocks with matching colors is as low as possible.  

• Observing the color values of tagged pointers should not allow an attacker to predict future color 
values. 

3.1.4.6 Debugging Strategy 

The RISC-V debug module and NXP-AT’s IEE module must be configured in the right way to enable correct 
debug functionality in the presence of the memory encryption engine required for the CTM module. For 
more information, see the specification of NXP-AT’s IEE module (Section 3.1.1). 

Additionally, toolchain support is beneficial as the debugger can only read the correct values from tagged 
memory blocks if the correct color is provided.  
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3.1.5 Enclave Memory Isolation (EMI) – NXP-AT 

Part of Task 3.1 Safety & Security Modules. 

3.1.5.1 General Information 

On modern systems, often a range of workloads run simultaneously on the same physical general-purpose 
processor. Running diverse workloads on one processor is cost-efficient as it reduces hardware complexity 
and reuses the existing infrastructure as much as possible. However, it is often the case that the different 
workloads use assets with varying sensitivity levels. Users may not trust every workload, and the vendors 
of the different workloads may not trust each other. Hence, it must be prevented that one workload can leak 
sensitive information related to another workload. Traditionally, this isolation is guaranteed by enabling 
processors to execute instructions in different privilege modes and to limit which memory can be accessed 
by a workload (e.g., memory protection or management units). In such a setting, critical configuration 
settings, like memory access permissions, can only be accessed by trusted software (usually the operating 
system) running in higher privilege modes. Hence, the trusted software can isolate workloads by setting 
suitable memory access permissions before lowering the privilege mode and jumping to the scheduled 
workload. Switching from one workload to another is done during a so-called context switch. A context 
switch is usually triggered by a timer interrupt, which will cause the processor to enter the highest privilege 
mode and execute an appropriate handler. During a context switch, the trusted software performs the 
following steps:  

1. Save the current processor state associated with the active workload.  
2. Determine which workload shall be run next.  
3. Restore the processor state of the workload scheduled to run next. The restored processor state 

also includes the appropriate memory access permissions. After this step, the execution will 
continue with the selected workload in the lower privilege mode.  

 The isolation of different workloads serves two main purposes:  

• Confidentiality: A malicious workload cannot access any data of another workload.  

• Integrity: A malicious workload cannot modify another workload's data without detection.  

However, research has shown that this logical isolation may be bypassed in malicious environments. For 
example, logical isolation is insufficient against a range of physical attacks:  

• By physically probing the memory bus between the processor and external memory chip the 
attacker could leak sensitive data.  

• Advanced techniques like laser fault injection could flip bits in memory modifying the behavior of 
software using these values [Roscian2013]. Note that there is also a software-based attack, called 
Rowhammer [Kim2014], that can achieve bit flips in DRAM.   

• Researchers showed that attacking the context switch by injecting faults also breaks logical 
isolation [Nashimoto2021]. Their work presents a fault attack that skips instructions reconfiguring 
the memory access permissions for the scheduled workload, allowing the scheduled workload 
unintended access to data of the previous workload.  

Adding a memory encryption engine that encrypts all data before it is stored in memory mitigates the first 
attack example, raises the bar for the second as injecting controlled modifications is harder, but does not 
help against the third example without additional countermeasures.  

3.1.5.2 Purpose and Scope 

As described in the previous section, logical isolation is insufficient to protect sensitive information in a 
malicious environment. Hence, the purpose of the EMI module is to enable workload-specific memory 
encryption for RISC-V cores together with NXP-AT’s IEE module (Section 3.1.1). Further, the design of the 
EMI module mitigates the impact of fault attacks including skipping instructions during the context switch. 
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Using the EMI module, the confidentiality of the data associated with different workloads is protected 
cryptographically without reliance on logical isolation. Note that NXP-AT’s IEE module (Section 3.1.1) only 
provides encryption without integrity protection to keep the memory overhead as small as possible. Hence, 
if used without logical isolation, malicious modifications of data associated with another workload are 
possible and cannot be detected directly. However, controlled modifications are only possible if a suitable 
value from a matching address is replayed, as the encryption tweaks will differ for every workload. Further, 
if a tweakable authenticated memory encryption engine is already available this can be incorporated with 
NXP-AT’s IEE module (Section 3.1.1) and modifications can be detected.   

Combining the classical logical isolation and the cryptographic isolation provided by the EMI module results 
in stronger security guarantees (e.g., mitigation of the previously explained attacks). These stronger 
guarantees benefit use cases requiring strong isolation between workloads like trusted execution 
environments. Keystone [Kohlbrenner2020] is an example of a RISC-V framework that allows the creation 
and management of trusted execution environments. In the case of Keystone, the untrusted workloads are 
run in isolated compartments called enclaves and interact with the main operation system called host. The 
enclaves run in privilege modes below M-mode and are managed by a trusted M-mode software called 
security monitor (SM). Figure 3.1.5.2-1 shows an overview of the different entities isolated by Keystone and 
which data they can access.  

 

Figure 3.1.5.2-1: EMI - Entities isolated by Keystone. 

3.1.5.3 Place in the System 

The EMI module is an ISA extension for RV32 cores without a MMU (microcontrollers) as can be seen in 
Figure 3.1.5.3-1. Further, it requires changes to the cache architecture and depends on a suitable 
tweakable memory encryption engine. These contributions are not described here, but in the section 
describing NXP-AT’s IEE module (Section 3.1.1). 
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Figure 3.1.5.3-1: Overview of the EMI Module in the system 

3.1.5.4 Block Diagram 

Figure 3.1.5.4-1 shows the internal architecture of the EMI module. The symbol “||” denotes the 
concatenation of bits or bit vectors where the most significant bits are always the leftmost. The figure also 
indicates to which pipeline stages and modules inside the RV32 core the EMI module will be connected. 
The description assumes that the base core has 7 pipeline stages (instruction fetch, decode, register access, 
execute, memory, exception, write-back). 
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Figure 3.1.5.4-1: Internal architecture of the EMI module 
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As can be seen in the Figure 3.1.5.4-1, most of the inputs to the EMI module come from the CSRs including 
the modifiers that are used to build the enclave-specific tweaks used for memory encryption. Every modifier 
consists of two CSRs to provide sufficient protection against brute-force guessing attacks. Writes to modifier 
CSRs cause a pipeline flush if the modifier affects the execution of the current privilege mode. For more 
information about these CSRs, see Section 3.1.5.5. The prv CSR represents the privilege mode the 

processor is currently executing in. This CSR is only used internally and cannot be accessed with 
instructions. The last input comes from the LD/ST unit and determines whether memory access is a load 
or store. The effective fetch, load, and store modifiers are selected according to the effective privilege mode. 
For instruction fetches, the effective privilege mode (f_privi) always matches the processor's current 

privilege mode. However, the privilege mode can be overridden for load and store operations using the 
MPRV and MPP fields in the mstatus CSR [Waterman2021]. If MPRV is set, then the privilege level encoded 

in the MPP field is used for load and store operations instead of the processor's current privilege mode. We 

also comply with this behavior by using the resulting effective memory access privilege mode (ls_privi) 

to select the effective modifiers for load (efetchmod, eloadmod) and store (efetchmod, estoremod) 

accesses.  

The output of the EMI module is an enclave-specific encryption tweak for fetch (f_encl_tweako; routed to 

the I Cache controller) and load/store operations (ls_encl_tweako; routed to the D Cache controller). The 

enclave tweak for fetch operations matches the effective fetch modifier. On the other hand, the enclave 
tweak for load or store operation is computed by combining the effective fetch modifier with the effective 
load or store modifier using an XOR operation. The fetch modifiers can only be configured by the trusted 
M-mode software, like the Physical Memory Protection (PMP) unit settings, while the other modifiers can 
also be written by lower-privileged software. Generating the enclave-specific tweaks according to this 
scheme has several advantages:  

• By allowing the enclaves to modify their load and store modifiers, they can reconfigure the memory 
encryption to access shared memory regions. In such a case, the enclave needs to know the load 
and store modifiers of itself and all shared memory regions.   

• The leakage of modifiers stored in a victim enclave does not enable another entity to access its 
memory or shared memory regions, as the enclave tweak computation for loads and stores also 
includes the effective fetch modifier. The effective fetch modifiers are only known to the trusted M-
mode software and are statistically unique per enclave. Hence, without knowing the effective fetch 
modifiers, no load and store modifiers granting access to the victim enclave or its shared memory 
regions can be computed.  

• The computation of the load and store enclave tweak as a combination of the effective fetch 
modifier with the effective load or store modifier also leads to architectural resilience against fault 
attacks aiming to skip instructions during context switches:  
 

o Suppose the switching of the load or store modifier is skipped. In that case, the combination 
of genuine fetch and previous load or store modifier will not match the needed value for 
accessing the memory of the previous enclave. Hence, an attacker can neither leak data 
from the prior enclave nor inject controlled modifications.  

o The only way to get an enclave tweak suitable for leaking or modifying the previous 
enclave's data would be to skip the switching of the fetch and load or store modifier. 
However, then the fetch modifier will not match the value required to decrypt the 
instructions belonging to the scheduled (attacker) enclave. Hence, the instructions in 
memory will be decrypted wrongly, and the execution will likely quickly end in an illegal 
instruction fault.  
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The final enclave tweak is stored as part of the cache lines7, passed to the memory controller by the cache 
subsystem and used by the memory encryption engine to cryptographically isolate the enclaves from each 
other. Note that this also implies that the protected memory regions must at least be cache line size aligned. 
For more information about the changes to the cache subsystem and the memory encryption engine see 
NXP-AT’s IEE module (Section 3.1.1). Figure 3.1.5.4-2 demonstrates the entity isolation provided by 
Keystone enhanced with EMI using the same example as in Figure 3.1.5.2-1. For example, considering the 
SM, we can see that in addition to the existing logical isolation by the PMP (as shown in Figure 3.1.5.2-1), 
the correct encryption tweak must be set for accessing memory regions (e.g., „SM tweak“ for accessing the 
memory region associated with the security monitor or „Host tweak“ for accessing the memory region 
associated with the host). If the set encryption tweak does not match the one associated with the memory 
region, then reads return random content, and controlled writes are not feasible. 

 

Figure 3.1.5.4-2: Entities isolated with Keystone enhanced with EMI. 

3.1.5.5 ISA 

The EMI module extends the ISA of the base RV32 core. The next sections describe modified and new 
design parameters, CSRs, instructions, and exceptions. 

Design Parameters 

Parameter  Default Value  Function  

EMI_ENABLE  1  Determines if the Enclave Memory 
Isolation module is included in the 
design.  

Table 3.1.5.5-1: EMI module design parameters 

CSRs 

 

 

7 In practice, the cache lines do not need to store the entire tweaks which would result in a large overhead, 
but rather would store a compressed version in the cache lines themselves and resolve those compressed 
versions via a lookup table before forwarding them to memory. This in turn requires an appropriate 
replacement strategy for the tweaks in the lookup table and an invalidation of certain cache lines in case a 
tweak is not present in the table. 
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In the following table, the privilege column gives the minimum required privilege mode (first letter) to access 
the CSR and which access types are allowed (last two letters). For example, M-RW means M-mode has 
read and write access, but lower privilege modes have no access.  

 

CSR  Index  Privilege  Bits  Function  

mloadmod0  TBD8  M-RW  31-0  LSW of load modifier for M-
mode  

mstoremod0  TBD8  M-RW  31-0  LSW of store modifier for M-
mode  

mfetchmod0  TBD8 M-RW  31-0  LSW of fetch modifier for M-
mode  

mloadmod1  TBD8 M-RW  31-0  MSW of load modifier for M-
mode  

mstoremod1  TBD8  M-RW  31-0  MSW of store modifier for M-
mode  

mfetchmod1  TBD8 M-RW  31-0  MSW of fetch modifier for M-
mode  

sloadmod0  TBD8  S-W9  31-0  Alias to 
u[load,store,fetch]mod[0,1]  

sstoremod0  TBD8  S-W9  31-0  

sfetchmod0  TBD8  M-RW  31-0  

sloadmod1  TBD8 S-W9 31-0  

sstoremod1  TBD8  S-W9 31-0  

sfetchmod1  TBD8  M-RW  31-0  

uloadmod0  TBD8  U-W9  31-0  LSW of load modifier for U-
mode  

ustoremod0  TBD8 S-W U-W9  31-0  LSW of store modifier for U-
mode  

ufetchmod0  TBD8  M-RW  31-0  LSW of fetch modifier for U-
mode  

uloadmod1  TBD8 S-W U-W9  31-0  MSW of load modifier for U-
mode  

 

 

8 These indices depend on the free CSR addresses in the processor to which the EMI module should be 
added. 

9 Those CSRs return zero when they are read in U or S-mode preventing unintended leakage of the 
modifiers. 
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ustoremod1  TBD8 S-W U-W9  31-0  MSW of store modifier for U-
mode  

ufetchmod1  TBD8  M-RW  31-0  MSW of fetch modifier for U-
mode  

Table 3.1.5.5-2: CSRs added by the EMI module. 

Table 3.1.5.5-2 shows that the S-mode CSRs are only aliases for the corresponding U-mode CSRs in the 
proposed design. This aliasing simplifies the design for our envisioned use case of enclaves running in 
privilege modes below M. In such a setting, differentiating between S- and U-mode is not required as the 
isolation shall be enforced between different enclaves. The advantage of this simplification is a reduced 
implementation overhead, as no physical registers for the S-mode CSRs are required. We kept the U-mode 
CSRs to allow the workload to switch its load and store modifiers in U-mode, enabling quick access to 
shared memory sections. This design choice matches the PMP, which is configured by M-mode software, 
and afterward the resulting memory access permissions apply to all privilege levels below M. 

3.1.5.6 Debugging Strategy 

The RISC-V debug module and NXP-AT’s IEE module must be configured in the right way to enable correct 
debug functionality in the presence of the memory encryption engine required for the EMI module. For more 
information, see the specification of NXP-AT’s IEE module (Section 3.1.1). 

Additionally, if the confidentiality of the enclaves shall be ensured, the devices must disable external 
debugging before enclaves are provisioned (can be ensured by an appropriate lifecycle). Otherwise, 
debugging can leak any enclave's information as the debug access cannot be limited to specific enclaves 
using the standard debug module. If debugging access is still required, either a self-hosted debug 
implementation with an agent in the trusted software that can enforce the restriction of access needed or 
an adapted debug module is required. 
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3.1.6 Forward-Edge Control Flow Integrity (FCFI) – NXP-AT 

Part of Task 3.1 Safety & Security Modules. 

3.1.6.1 General Information 

Systems operating in potentially malicious environments are subject to logical and physical attacks. Fault 
injection attacks based on optical, electromagnetic, clock, or voltage glitches are a form of active physical 
attacks. These attacks can modify or skip instructions, altering the control flow and bypassing security 
checks. Research demonstrated various successful attacks exploiting instruction skips introduced by fault 
attacks. Among those are bypassing signature verification to load malicious firmware [Buhren2021] or 
skipping the reconfiguration of memory protection units to gain access to protected data [Nashimoto2021].  

Note that we cannot share detailed information in this public deliverable as no patent has yet been 
filed for the FCFI scheme. Hence, only high-level information is presented, and the other sections 
have been removed.  

3.1.6.2 Purpose and Scope 

The FCFI module ensures the integrity of the instruction stream by calculating a running checksum over 
the executed instructions and regularly comparing the current checksum value with pre-computed reference 
values. If a mismatch is detected, then a software integrity violation is raised. Hence, the FCFI module 
allows the detection of attacks that modify the instruction stream. The FCFI module can also detect 
modifications of forward-edge control flow transfers (indirect jumps and calls). However, it cannot protect 
backward-edge control flow transfers (function returns). For this purpose, it can be combined with NXP-
AT’s BCFI module (Section 3.1.2). 

3.1.6.3 Place in the System 

The FCFI module is an ISA extension for RV32 cores without a MMU (microcontrollers) as can be seen in 
Figure 3.1.6.3-1. 

 

 

Figure 3.1.6.3-1: Overview of the FCFI module in the system 

3.1.6.4 Sub-Modules 

The FCFI module requires a submodule for computing and updating a checksum. 

RISC-V Processor
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3.1.6.5 Debugging Strategy 

If the RV32 core is in debug mode, then the FCFI module is suspended to allow executing instructions in 
the debug ROM and program buffer without integrity violations. The FCFI module is resumed after leaving 
debug mode.  
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3.1.7 Memory Subsystem Support for Bytecode VMs – HM 

Part of Task 3.1 Safety & Security Modules. 

3.1.7.1 General Information  

The memory subsystem support for the acceleration of bytecode VMs concerns the data memory path of 
the microarchitecture. To map stack-based machines onto RISC-V register machines, hardware-based 
stacks offload the stack push and pop operations. Besides that, the integration of memory tagging 
operations is under investigation as part of the module.  

3.1.7.2 Purpose and Scope  

The module accelerates the data memory interaction of the bytecode VM implementation. It accelerates 
both interpreter implementations and ahead-of-time compiled code. As stack accesses have a significant 
impact on the execution, a hardware-assisted data stack can accelerate the execution of both interpreters 
and ahead-of-time compiled code. The subsystem integrates with the main core pipeline and can be 
accessed from other accelerators, such as bytecode execution units. 

3.1.7.3 Place in the System 

 

 

Figure 3.1.7.3-1: Memory Subsystem Support for Bytecode VMs – Place in the system (FE = Fetch, CSR = Control 
and Status Register Interface, LSU = Load Store Unit, BC = Bytecode Translator) 

The module (“Stack”) in Figure 3.1.7.3-1 integrates with the core pipeline primarily via CSR registers. The 
prime use case is to load and store the top of the stack via a dedicated CSR. The module has a configurable 
size of the hardware stack that contains the top elements. It spills between the hardware stack and the 
memory autonomously from the pipeline (ideally without backpressure). The width of the spilling is 
configurable usually through the cache block size or through the memory width. 

A second port to the stack allows other modules to also interact with the stack. In the case of a hardware-
assisted bytecode execution (dashed), the bytecode generator can pop values from stack and generate 
instructions that write back to the module (which requires deep integration into the pipeline). 
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3.1.7.4 Block Diagram 

 

Figure 3.1.7.4-1: Memory Subsystem Support for Bytecode VMs – Block diagram 

The block diagram 3.1.7.4-1 shows the internal structure of the module. The spill logic and the access logic 
are state machines that interface the outside world, the stack itself is a shift register, controlled by both 
interfaces. 

3.1.7.5 Interfaces 

The module has three interfaces. 

CSR Interface 

There are two CSR registers: 

• CSR_BCVM_STACKADDR: The base address of the stack in memory. It is used to configure the stack 

address of the currently running module.                                                                                                                                                     

• CSR_BCVM_TOP: Push and pop operands from hardware stack. 

Data Memory Interface 

Access to the data memory interface, which can be multiplexed on the memory interface. An Advanced 
eXtensible Interface 4 lite (AXI4lite) interface is supported for convenience. 

Core Integration (optional) 

The push and pop access can also be done via two simple handshake channels (ready, valid, data). 
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3.1.8 Safety-Related Traffic Injector (SafeTI) – BSC 

Part of Task 3.1 Safety & Security Modules. 

3.1.8.1 General Information 

The SafeTI is a flexible and programmable traffic injection hardware module to enable exhaustive timing 
verification and validation of powerful Multiprocessor System-on-Chips (MPSoCs) for safety-critical 
systems. In particular, BSC’s latest version comes along with an increased number of features and an 
improved architecture that have been contributed as part of the work in ISOLDE. 

3.1.8.2 Purpose and Scope 

SafeTI is designed to inject programmable traffic in on-chip interconnects. SafeTI allows programming 
arbitrary traffic patterns where multiple parameters can be configured, such as read/write requests, data 
size sent/received, burst length, inter-request delays, repetitions per request, sequence of requests, etc.  

Traffic pattern programming is devised to keep the memory footprint low to reduce the internal storage 
needed and speed SafeTI programmability up. Moreover, traffic pattern descriptors have been devised, 
enabling future extensions.  

SafeTI is implemented as a pipelined module to enable high injection rates without unnecessary delays 
between consecutive requests.  

SafeTI is designed to ease its portability across different communication interfaces like AMBA AHB, AMBA 
AXI and others. We provide its realization for an AMBA AHB interface.  

SafeTI is integrated in an FPGA-based MPSoC from Frontgrade Gaisler AB, based on RISC-V NOEL-V 
cores. 

3.1.8.3 Place in the System 

The SafeTI is an AMBA AHB and AXI compliant module for traffic injection. It is intended to be connected 
to these two types of interfaces, and it is particularly useful if those interfaces have either multiple managers 
or are connected to subordinates receiving requests from multiple managers. For instance, its best 
placement is as part of the interface connecting the cores and/or accelerators with the shared caches or 
memory controllers, as illustrated in the schematic in Figure 3.1.8.3-1. This way, the predefined traffic can 
be injected to test a variety of timing and functional behavior controllably.  

SafeTI’s programming port is compliant with the AMBA Advanced Peripheral Bus (APB), although it will be 
extended to AMBA AXI in the future. 
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Figure 3.1.8.3-1: SafeTI - Place in the system 

3.1.8.4 Block Diagram 

 

 

Figure 3.1.8.4-1: SafeTI - Block diagram 

The SafeTI has a set of control registers programmed through an APB interface. Those control registers 
are the ones allowing to program the descriptor buffer, which stores microprogrammed sequences of traffic 
patterns to be injected by the SafeTI into the injection interface (IB in the Figure 3.1.8.4-1), namely an AXI 
or AHB interface. 

The injection pipeline of the SafeTI works as follows: once the next descriptor is fetched (they are fetched 
from the descriptor buffer analogously to instructions from memory in a computing core), it is decoded. A 
descriptor pointer indicates the next descriptor to fetch. The iteration counter in the descriptor indicates 
whether the next descriptor needs to be fetched next, or whether the current descriptor needs to be used 
again (e.g., to inject repeated traffic). Using the information of the decoded descriptor, the traffic injection 
stage generates the traffic to inject (read or write, with a given data transaction size, whether in burst mode 
or not, etc.). Note that, if the descriptor is a delay descriptor, no traffic is injected until the indicated delay 
elapses. 
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3.1.8.5 ISA 

 

Figure 3.1.8.5-1: SafeTI as microprogrammed and memory mapped module using its own descriptor format. 

The SafeTI is a microprogrammed and memory mapped module using its own descriptor format, which we 
illustrate in Figure 3.1.8.5-1.   

Each descriptor type features a different word length and field encoding to accommodate the programmable 
parameters required by the action to be carried out. However, every descriptor shares the first descriptor 
word format specified in the figure, providing a compatibility layer in the descriptor format for lighter 
implementation. Changes to the first descriptor word fields are considered in future descriptor type 
expansions. Fields size and count could be modified for new descriptor types due to being action specific, 

whereas fields like irq_en, type and last are considered immutable, to maintain the compatibility layer.  

The size field encodes the number of bytes to access for READ and WRITE descriptor types or the number 

of clock cycles needed to wait for the DELAY descriptors. The count field encodes the number of times the 

descriptor’s execution must repeat. Thus, the same operation is executed (count + 1) times. The irq_en 

bit allows the SafeTI to send an interruption through the APB interface upon descriptor completion. Finally, 
the last bit is used to finalize the injection pattern at a specific descriptor completion (which disables the 

traffic injector if QUEUE mode is disabled) or restarts the execution from the first descriptor.  

Descriptor types READ, WRITE, READ_FIX and WRITE_FIX include a second 32-bit word used as a 
starting address where to perform the access operation. Should an invalid address be programmed, the 
traffic injector behavior depends on the network response to complete the access with an error (e.g., lack 
of permission, non-existing, etc.) and resumes traffic injection.  

3.1.8.6 Interfaces 

AMBA AHB/AXI interface 

The AHB or AXI interface is a manager interface used to inject traffic. It is fully compliant with the 
specification of the corresponding protocol. Note that, in general, a SafeTI instance supports only one of 
those interfaces and injects traffic accordingly.  

AMBA APB interface 

Hardware interface 

 

Figure 3.1.8.6-1: SafeTI - Hardware interface 
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The AMBA APB subordinate interface is used to program the control registers of the SafeTI, and to store 
descriptors in the internal descriptor buffer. An address space of 256 bytes is reserved for the APB interface, 
with such addresses being set at integration time.  

The APB interface only supports single 32-bit accesses for setting the configuration register (0x00), shown 
in Figure 3.1.8.6-1, and descriptor word input feed register (0xFC) for programming the injection pattern.  

The SafeTI programming process consists of word by word writing each descriptor, in execution order. 
Descriptors to be written are obtained through the APB descriptor feed register stored in the descriptor 
buffer, which is part of the FETCH stage. Once the desired injection patterns have been programmed, the 
injector may be configured and then initialized.  

The reset_sw bit is asserted when a new injection pattern needs to be loaded. The current pattern is wiped 

out, and all circuits are reset except those related to transactions in process. This is necessary to allow for 
the correct termination of ongoing transactions. On the other hand, the hardware reset puts all circuits in a 
default state without exceptions. Yet, note that the hardware reset is a SafeTI signal not visible to the 
software layers.  

SafeTI module features several interruption flags that are propagated through the APB interface. These 
include interruptions raised due to a network error, generated when the injection network answers with an 
error, due to an internal error caused by an unsupported encoding, or due to injection pattern completion. 
Furthermore, descriptor completion can also trigger an interruption, programmed on the first descriptor word 
as explained before.  

SafeTI also features an automatically disabling mechanism, which triggers an interruption by asserting the 
freeze_irq flag to notify that it has been disabled. SafeTI is disabled by means of a hardware breakpoint 

of the traffic pattern execution. The conditions that can trigger the interruption are configured by asserting 
the irq_err_net, irq_err_core and irq_prog_compl for network error, SafeTI error, or injection pattern 

completion respectively.   

SafeTI can be set in QUEUE mode by asserting the queue_mode flag so that the injection pattern execution 

loops to the first descriptor after completion. The freeze_irq flag overrides the QUEUE mode, meaning 

that upon the right conditions the traffic injector is disabled, even if SafeTI is configured to work in QUEUE 
mode. 

Software Interface 

The control register of the SafeTI, as well as the descriptor word input feed register used for SafeTI 
configuration must be modified only by software components with appropriate privileges. To realize this, 
the SafeTI registers are mapped in specific physical addresses upon integration in the platform, and the 
hypervisor (FENTISS’ XtratuM in the particular case of the SafeTI integration in ISOLDE) is in charge of 
managing privileges to allow only specific partitions updating and reading of the SafeTI’s registers.   

The preferred configuration consists of allowing only a single partition to modify the SafeTI’s registers, 
whereas the other partitions cannot access them. XtratuM guarantees this behavior leveraging the MMU 
existing in the NOEL-V cores. This MMU also implements the RISC-V ISA hypervisor extension.   

Overall, the XtratuM hypervisor provides memory space isolation for the SafeTI’s registers, hence achieving 
freedom from interference, in line with safety standards guidelines for items with integrity requirements. 

3.1.8.7 Clocking Strategy 

SafeTI is designed to share the same clock signaling used for the injection interface, whose input port is 
labeled as clk. The module does not allow yet for different clocking regions between the programming 

(APB) and injection (AHB or AXI) interfaces. 
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3.1.8.8 Reset Strategy 

The SafeTI integrates two reset methods, the hardware active low reset signal through the input port rstn, 

and the aforementioned software reset flag reset_sw through the APB programming interface. The 

hardware reset completely wipes all data from both SafeTI and injection interface, resetting the module to 
a blank state and interrupting any on-going transaction. The software reset clears APB registers, sets 
descriptor buffer and stage registers to their initial state, and lets the injection interface operate 
independently to complete any on-going transactions. 

3.1.8.9 Verification Strategy 

The SafeTI verification strategy incorporates a custom testbench for the simulation environment, generating 
expected and unexpected communication from the injection interface with adjustable degrees of tolerance 
(e.g., answer at different clock cycle). Additionally, SafeTI includes a number of counters (e.g., number of 
transactions requested) to provide an increase in observability for debugging on FPGA environment. 
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3.1.9 Safety and Security Control Unit – IFX 

Part of Task 3.1 Safety & Security Modules. 

3.1.9.1 Purpose and Scope 

The safety controller shall collect the kind and number of on-chip detected errors, pre-process them, and 
trigger follow-up actions. Error detection and follow-up actions are out of scope of the safety controller; the 
errors are reported, and follow-up actions are triggered by the safety controller. 

3.1.9.2 Place in the System 

The safety controller is intended to be SW programmable, thus it shall support a bus interface; at the 

moment this is AHB. Further, the safety controller is connected to IP-blocks as shown in Figure 3.1.9.2-1 

or blocks onside the IPs’ implementation. Via this connection, detected and corrected errors are reported 

separately to the safety controller. Thus, also a corrected and an additionally occurring but not corrected 

error can be reported. Further, the Safety Controller is connected to an interrupt mechanism, which is here 

an external device. 

 

Figure 3.1.9.2-1: Safety Controller in a SoC 

3.1.9.3 Block Diagram 

The safety controller is depicted in Figure 3.1.9.3-1. It possesses signal interfaces to wires reporting on 
errors. These inputs are pre-processed in two error analyzers. One for not corrected errors (error analyzer) 
and one for corrected errors (corrected error analyzer). 
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The error analyzer contains channels for each signal wired to the safety controller. The analyzed errors are 
forwarded to the action request unit, which manages the action request. All three subcomponents are 
controlled via values written in bit fields. They report the status by reading the bitfields. 

 

 

Figure 3.1.9.3-1: Safety Controller 

3.1.9.4 ISA 

There are no special instructions planned. In case of tight coupling, the safety control unit may be SW 
accessed via CSRs. The address of the CSRs is not defined as this is an unsupported option. 

The software-based error actions use interrupt signals. More precise alignments may need to enhance the 
CLIC related definitions in the RISC-V specification. 

3.1.9.5 Interfaces 

The interfaces consist of error detection signals, safety action trigger signals, a bus interface and the 
clock/reset interface. 

AMBA AHB/ABP Interface 

The bus interface is AHB or APB. 

Error Detection Signals 

Error detection signals are level sensitive. The report is high active. If more than one error shall be reported 
at a time, the number of errors is binary encoded in a vector of error detection signals. In both cases a low 
value on a single wire or the number zero reports “no-error”. 

Safety Action Trigger 

The safety action trigger is assumed to be positive edge sensitive. Level and handshake-based signals / 
signal pairs are an alternative but are not supported. 

Clock / Reset Interface 
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The clock is assumed to trigger with rising edge and the reset is assumed to be asynchronous low sensitive. 
Further, there should be no clock edge when the reset is active. 

Clock and reset are planned as separate signals but may be grouped in an interface. 

3.1.9.6 Sub-Modules 

The submodules are the error analyzer, which is instantiated twice, the action request unit, and the bus 
interface module. 

(Corrected) Error Analyzer 

Error analyzers count the arriving errors and trigger the action request unit only if a threshold is reached. 
Optionally, every error can be forwarded to the action request unit. 

The error count, the error threshold and a reset of those values is controlled by bitfields. 

Action Request Unit 

The action request unit merges error requests and raises error requests to the outside. It also handles the 
protocol to the unit(s) that handle the action requests. The action request handler is controlled via bitfields. 

Bus Interface Module 

The bus interface enables the software by memory mapped IO to access the bitfields in the units. 

3.1.9.7 Software based Error Handling 

It is intended to use a RISC-V CPU core for handling detected errors. Other solutions are open as well. For 
the intended case, action trigger signals from the safety controller are connected to an interrupt controller 
or directly the exception unit. 

RISC-V Trap Handling 

Exceptions and interrupts are crucial concepts in the RISC-V architecture, providing mechanisms to handle 
unexpected events or changes in the system’s state. In this section, we will cover what exceptions and 
interrupts are, briefly describe how they are handled in RISC-V and discuss how exceptions and interrupts 
can be used to ensure system reliability. 

Exceptions and interrupts are events altering the normal program execution flow. The first ones are related 
to synchronous events, while the second ones are asynchronous. In other words, exceptions are tied to a 
specific instruction, while interrupts are not. Illegal instructions, misaligned addresses, and memory access 
faults are typical exceptions, while interrupts can be triggered by peripheral devices, timers, and other 
cores. The mechanism to handle exceptions and interrupts is called a “trap.” When an exception or interrupt 
occurs, the processor takes a “trap” to a predefined location in the memory, known as the “trap handler.” 
To increase readability, we’ll from now on use the word “traps” to refer to both exceptions and interrupts. 
The trap handler is responsible for saving the current state of the processor, handling the trap, and restoring 
the processor state before resuming normal execution. 

The following key registers are used to handle traps: 

• mcause 
Encodes the specific cause of the trap (load access fault, timer interrupt, external interrupt, 
etc.) so that the trap handler can take appropriate measures. 

• mepc 
Stores the address of the instruction that caused the trap for exceptions, and the address of 
the instruction that would have been executed next for interrupts. It helps returning to the 
regular program execution once the trap has been handled. 
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• mtvec 
Contains the address of the trap handler where the CPU needs to jump. It is typically written 
during the system boot. 

• mtval 
Holds additional information related to the trap to handle it better. For instance, this value could 
be the faulting address in case of a load access fault. 

When a trap occurs, the processor saves the current program counter (PC) in the mepc register and sets 

the mcause register accordingly. The mtval register is updated if additional information is required. The 

processor then jumps to the trap handler address stored in mtvec, processes the trap, and resumes normal 

execution by setting the PC to the mepc value. 

Some traps are already defined by RISC-V, such as the ones mentioned above. These traps define typical 
unexpected behaviors that can happen during the execution of a program and handling them is particularly 
important in safety-critical systems. Furthermore, some free space is left to define custom traps and can 
therefore be related to on-chip faults detected by various mechanisms (DMR, TMR, ECC, etc.). In 
conclusion, traps appear as a robust and flexible mechanism for ensuring system reliability and fault 
tolerance. The hardware unit responsible for setting the registers and disrupting the regular execution of 
the program is called the “Exception Unit.” 

Exception Unit as Safety Controller 

As discussed in the previous section, traps are suitable mechanisms for safety-critical applications. Safety 
mechanisms can be connected to whether trigger a trap directly or to increment a counter that will trigger a 
trap when reaching a predefined value. Self-tests can also be executed inside a dedicated trap handler, 
and the Exception Unit will resume the program execution when done. The Exception Unit can therefore 
be seen as a Safety Controller. Now that we explained the concept, this part will focus on explaining the 
capabilities of our Exception Unit. 

The design of the Exception Unit follows a model-driven approach where a single implementation leads to 
different configurations, depending on the user inputs. In this regard, each trap can be enabled or disabled 
separately, and if a trap requires custom registers, they’ll be added to the design automatically without the 
user manually specifying them. The number of privilege levels (from one to three) can also be selected. 
The whole Exception Unit architecture will be adapted accordingly, alongside the CPU. 

When a trap occurs during the execution of a trap handler, it is called a “nested trap.” Each trap has a 
priority associated with it which impacts the Exception Unit behavior in case of nested traps. If the second 
trap has a lower priority, it is stacked inside the Exception Unit and will be handled once the current trap 
handler finishes. If it has a higher priority, it will disrupt the execution of the current trap handler to execute 
its own. In order not to erase the information stored in the registers to handle the first trap, new registers 
are created. Since we cannot create an infinite number of registers, there is a limit to the number of nested 
interrupts that our design can handle. This limit is set by the user as part of our metamodel.  

The mtvec register has two bitfields: mtvec.BASE, where the address of the trap handler is stored, and 

mtvec.MODE that defines special behavior for interrupts. Figure 3.1.9.7-1 shows how hardware and software 

collaborate to pass control to the correct handler when mtvec.MODE = 0. When a trap is triggered, the 

Exception Unit will write to the mcause register and propagate the mtvec.BASE value to the PC. The 

program jumps to a general trap handler that will read the cause of the trap and jump to a specific trap 
handler accordingly. When mtvec.MODE = 1, exceptions still jump to the address contained in mtvec.BASE 

and will ultimately execute a general exception handler that is responsible for jumping to the specific 
handler. However, interrupts don’t jump to mtvec.BASE but to a location depending on their code (cause of 

the interrupt). At this location, there is directly a jump instruction to the specific handler location without 
requiring the software to read mcause, as shown in Figure 3.1.9.7-2. This lowers the latency for handling 

interrupts as the core now only needs to perform two jumps (first decided by hardware and second by 
software) to execute the specific trap handler. Exceptions are also sped up, as the software in the general 
exception handler needs to check fewer values for mcause since the interrupts have been taken away. 
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In any case, there is still a latency before executing the trap handler, which could be a problem for safety-
critical applications where the Worst-Case Execution Time (WCET) is of utmost importance. For this 
reason, we developed a fast address resolution, as shown in Figure 3.1.9.7-3. Each trap is now associated 
with a register. When a trap occurs, the PC is set to the address of the associated register to handle the 
specific trap directly, reducing the latency to a minimum. The user can decide not to create a register for a 
specific trap. If so, the PC will be set to mtvec.BASE per default when this trap is triggered, and the software 

will be responsible for jumping to the specific trap from there. The user can also select a single register to 
be associated with multiple traps. This high flexibility makes this Exception Unit suitable for multiple 
applications with different requirements. 

 

Figure 3.1.9.7-1: Safety Control - Normal address resolution with mtvec.MODE = 0 
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Figure 3.1.9.7-2: Safety Control - Normal address resolution with mtvec.MODE = 1 
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Figure 3.1.9.7-3: Safety Control - Fast address resolution 
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3.1.10 Safety Island - Interface Definition – UZL 

Part of Task 3.1 Safety & Security Modules. 

3.1.10.1 General Information 

A safety island is in charge of monitoring the Processing System, detecting and managing overall critical 
behaviour, and provides a function to execute selected high-criticality software. The safety island detects 
safety issues and either flags the issue or, more advanced, also handles the issue.  The safety island is 
built from several units comprising computing, monitoring, and control.   

Externally, the safety island has similar interfaces to those of a processing system, such as those to plug it 
to address/data interconnects (e.g., an AMBA AXI interface) as well as to the interrupt controller handling 
interrupts of several units. Hence, the Multi-Processor SoC -- where the safety island is deployed -- remains 
mostly unchanged, and only minor modifications in some units’ interfaces are required to add safety island 
components.  

3.1.10.2 Purpose and Scope 

In the last two years, there were developments regarding safety island interfacing inside and outside the 
ISOLDE projects. For example, BSC’s SafeSU Unit uses the AMBA AXI interface to connect to the 
processing system, also OFFIS’ Time Contract Monitoring Co-Processor (TCCP) module references on 
BSC’s strategy. ETHZ proposes a System called Carfield, which again makes use of the AMBA AXI 
interface and some additional interrupt signals. 

During the proposal and starting period of ISOLDE, partners already decided to use the AMBA AXI interface 
and focus their development on this interface as a connection between the safety island / safety modules 
and the processing system. Based on this development, UZL will refocus and move efforts into the 
development of the accelerator system. 

3.1.10.3 Place in the System 

The safety island consists of different modules that are connected to the processing system as illustrated 
in Figure 3.1.10.3-1. There is also an independent system of safe cores, which is independent from the 
main processing system. 

 

Figure 3.1.10.3-1: Safety Island block design & MPSoC 
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3.1.10.4 Interfaces 

Following the partner concepts, the AMBA AXI interface will be used to connect to the processing system. 
Furthermore, modules will have certain independent interrupt signals that are handled by the safety islands’ 
interrupt controller. 

3.1.10.5 Reset Strategy 

The Safety Island is independent from the processing system. Hence, it will be alive during system’s reset 
process. To achieve this behaviour, the reset signal for the processing system must be delayed until the 
safety island is ready to operate. This can be realized by either the safety island-controlled reset or by the 
reset logic which will be ANDed with the safety island state “running”. 

3.1.10.6 Debugging Strategy 

When the CVA6 core is in debug-mode, the safety island should be informed analogue, so it is capable of 
differentiating between debugging mode and misbehavior. 
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3.1.11 Root-of-Trust Unit (RoT) – UNIBO 

Part of Task 3.1 Safety & Security Modules. 

3.1.11.1 General Information 

Silicon Root-of-Trust (RoT) units represent the state-of-the-art in terms of trusted computing and system 
integrity, as they establish an isolated silicon region with security features for data and code protection. 
They protect memory from tampering and include cryptographic acceleration units and physical 
countermeasures (e.g., voltage/temperature monitors) to detect security threats. 

3.1.11.2 Purpose and Scope 

The Root-of-Trust provided by UNIBO within ISOLDE is based on lowRISC's OpenTitan, the first open-
source RISC-V based RoT design. It includes acceleration units for the Secure Hash Algorithm (SHA) 
enabling cryptographic hashing (SHA-256 and SHA-3), message authentication (Hash-based Message 
Authentication Code - HMAC, KECCAK Message Authentication Code - KMAC) and symmetric encryption 
(Advanced Encryption Standard - AES). UNIBO's RoT is meant to be a ready-to-integrate silicon IP able to 
act as a RoT. 

3.1.11.3 Place in the System 

 

Figure 3.1.11.3-1: RootOfTrust - Place in the system 

As shown in Figure 3.1.11.3-1, UNIBO's RoT is meant to be integrated to a top-level system AXI4 crossbar. 
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3.1.11.4 Block Diagram 

 

Figure 3.1.11.4-1: RootOfTrust - Block diagram 

Figure 3.1.11.4-1 sketches the architecture of the Root-of-Trust (RoT) unit. The central unit of the RoT is 

OpenTitan10; it contains a microcontroller based on the IBEX architecture and is centered on a system 
interconnect based on the TileLink Uncached Lightweight (TLUL) variant, along with several crypto 
acceleration subsystem, a boot manager, and a source of entropy. OpenTitan is wrapped into TLUL/AXI4 
bridges to provide connectivity with the rest of the system. 

3.1.11.5 Power Management Strategy 

Dynamic clock gating of the internal computing elements depending on the utilization in the executed kernel. 

  

 

 

10 https://opentitan.org/documentation/index.html  
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3.1.12 Root-of-Trust Unit Design and Interface with RISC-V Host 
Processor (TitanCFI) – UNIBO 

 

Part of Task 3.1 Safety & Security Modules. 

3.1.12.1 General Information 

TitanCFI is a module aimed at extending the CVA6 core with a stage able to filter CFI instructions and 
forward them into a private mailbox. It foresees the presence of an instance of the OpenTitan Root-of-Trust 
integrated in the System-on-chip. The computational element in the OpenTitan (namely the IBEX processor) 
reads the instruction stream and enforces the CFI policy. 

3.1.12.2 Purpose and Scope 

The proposed module relies on exploiting the OpenTitan RoT, that is already present on the platform to 
enable Secure Boot and Remote Attestation, as a CFI co-processor. The motivation behind this choice is 
to harness the RV32IMAC Ibex core within OpenTitan to execute custom CFI policies in software. This 
approach avoids the area overhead associated with integrating a separate security monitor and maximizes 
the utilization of the RoT, which typically remains unused after the platform is initially set up. Moreover, our 
solution takes advantage of the security features provided by the RoT, including access to private tamper-
proof storage and cryptography accelerators, to provide additional security guarantees with respect to the 
other state-of-the-art (SoA) solutions. 

3.1.12.3 Place in the System 

The module is composed by a host domain and a RoT domain part. The host domain part is located in the 
CVA6 core and is aimed to extract information about the committed instructions. This host domain part is 
connected to the RoT domain via a HW mailbox using the System Control and Management Interface 
(SCMI) protocol. The RoT domain contains a custom OpenTitan firmware executing the CFI policy. 
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3.1.12.4 Block Diagram 

 

Figure 3.1.12.4-1: TitanCFI - Block diagram 

We designed the CFI monitor following the scheme in the Figure 3.1.12.4-1. The monitor is software 
configurable to extract the wanted instructions. Also, it is possible to configure the instruction monitoring 
queue. Having a queue of 1 instruction allows an immediate reaction in case of control-flow diversion 
detection. However, this implies an overhead as the CVA6 core will have to wait for the monitor (i.e., the 
OpenTitan firmware) to complete the analysis. From the other side, increasing the queue reduces this 
overhead at the cost of a postponed reaction. The design trade-off of these solutions will be evaluated 
during the project using a set of benchmarks and considering target aerospace applications. 

3.1.12.5 Interfaces 

The interface between the CFI monitor inside the CVA6 core and OpenTitan exploits a HW mailbox using 

the SCMI protocol. OpenTitan is integrated in the SoC and it can access the memory through a custom 

bridge between the internal TileLink interconnect and an AXI plug exposed externally. Communications 

between the host domain and the RoT are mediated by a SCMI compliant mailbox. The mailbox consists 

of a set of general-purpose memory mapped registers meant for data sharing. Additionally, it features two 

registers, named Doorbell and Completion, which are meant to send an interrupt to the IBEX security 

microcontroller and to the CVA6 host core. CFI metadata extracted from the retired instructions are stored 

in a CFI Mailbox, where they can be read from the RoT. The design of the CFI Mailbox is analogous to the 

SCMI- like mailbox already present in the reference SoC. We parametrize the general-purpose registers to 

be large enough to store the CFI metadata required to represent a single control flow instruction. When a 

new metadata is ready to be read, the enhanced CVA6 commit stage sets the doorbell register in order to 

trigger an interrupt in the RoT. Unlike a regular SCMI-like mailbox, the completion register is not connected 

to the host domain interrupt controller, but directly to the commit stage of the CVA6 core. To indicate that a 

previously retired instruction has been checked, the result of the CFI enforcement policy can be read from 

the mailbox, signaling that the RoT is ready to read the next commit log. 
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3.1.12.6 Clocking Strategy 

The CVA6 core extensions which take care of filtering the instructions retired by the core, forwarding them 
to the OpenTitan Root-of-Trust, are completely synchronous with the CVA6 core, and they are not expected 
to need special treatments with respect to the core pipeline. 

At the same time, the CFI Mailbox, which stores the CFI metadata until OpenTitan reads it, is synchronous 
with the interconnect where it is mapped. 

3.1.12.7 Reset Strategy 

The sequential elements present in the CVA6 core extensions, and the CFI mailbox are expected to be 
synchronously cleared during reset. 

3.1.12.8 Debugging Strategy 

When the CVA6 core is in debug mode, none of the instructions retired by the core should be considered 
for the sake of Control-Flow Integrity enforcement, and no additional instructions should be logged into the 
CFI mailbox. 
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3.1.13 High-Performance Cache Analysis – SYSGO 

Part of Task 3.1 Safety & Security Modules. 

3.1.13.1 General Information  

We analyze the high-performance cache provided by CEA in the TRISTAN project for the ISOLDE 
demonstrator. The output is a short analysis comparing the CEA cache with the default cache. 

3.1.13.2 Purpose and Scope  

Advance CVA6 ecosystem by showing usability of advanced caches. Our general focus is on safety and 
security, and caching is one important part of this, e.g., concerning future implementation of cache 
partitioning. 

3.1.13.3 Place in the System   

Caches are between CPU and memory and serve to speed up memory access. We expect this to be 
relevant in an application setting.  

3.1.13.4 Block Diagram  

The block diagram of the cache itself has been published by TRISTAN partner CEA, see Figure 3.1.13.4-
1. We use a demonstrator setup where the application runs on the CPU, that takes data from memory via 
the cache, see Figure 3.1.13.4-2. 

 
Figure 3.1.13.4-1: High-performance cache block diagram, by CEA [Fuguet 2023] 
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Figure 3.1.13.4-2: High-performance cache analysis block diagram 
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3.2 Accelerator Infrastructure, Memories, Arithmetic Units, 
Interfaces and Virtualization  

Task 3.2, M3-M33, Leader: UZL 

Task 3.2 focuses on accelerator infrastructure such as arithmetic units and fast memories. The 
infrastructure to the core plays an important part in enabling an accelerator's performance. The developed 
modules include scratchpad memory (integrated in the Vector-SIMD accelerator developed in Task 3.4), a 
floating-point accelerator, as well as floating-point tensor processing units with custom float- and fixed-point 
operators. These accelerators are suitable for intense floating-point applications targeting specific trade-
offs between accuracy and performance requirements.  

 

IP 
Lead 

Beneficiary 
Type Domain Dependencies Licensing 

FPMIX POLIMI 
RISC-V Core 
Extension 

Arithmetic 
Unit 

RISC-V core 
with F extension 

Open source 
(bfloat16) 
Proprietary 
(others) 

FPU UZL 
RISC-V Core 
Extension 

Arithmetic 
Unit 

CVA6 Open source 

Scratchpad IMT Core Accelerator None 
Restrictive 
open source 
(GPL-3.0) 

Table 3.2-1: Overview of contributions in Task 3.2 

  

https://github.com/openhwgroup/cva6
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3.2.1 FPU for Mixed-Precision Computing (FPMIX) – POLIMI 

Part of Task 3.2 Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization.  

3.2.1.1 General Information 

Customizable floating-point arithmetic unit that can implement operations with various amounts of precision 
bits in their floating-point arithmetic formats for the operands and result. 

3.2.1.2 Purpose and Scope 

The floating-point unit (FPU) is meant to be used in mixed-precision computing scenarios, which can fully 
make use of the flexibility in the precision provided by the FPU to achieve different tradeoffs between 
accuracy, latency, energy consumption, and area. For example, workloads such as artificial-intelligence 
ones in which a loss of accuracy can be accepted, implementing Floating-Point (FP) formats with smaller 
precisions can be leveraged to reduce the area occupation and power consumption of computing hardware. 
To this end, the formats of FP operations in FPMIX can be configured at design time, also by leveraging 
precision tuning approaches such as [Cherubin2020]. 

3.2.1.3 Place in the System 

The FPMIX floating-point unit can be integrated as the functional unit of a RISC-V CPU core replacing 
any existing FPU. 

FPMIX will be evaluated for the integration in the root of trust of the space demonstrator use case, if 
floating-point computations are needed in the root of trust. 

3.2.1.4 Block Diagram 

 

Figure 3.2.1.4-1: FPMIX - Block diagram 
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The FPU implements floating-point operations whose precision (number of mantissa bits) can be configured 
at design time. The precision for each type of operations is independently configurable at design time, i.e., 
different floating-point operations can have different precision, while the dynamic range (number of 
exponent bits) is fixed and the same as the widely used IEEE-754 float32 one for all the supported floating-
point formats. In general, each category of operation in the FPU, namely, additions/subtractions, 
multiplications, divisions, comparisons, and conversions, can indeed implement a floating-point format with 
a different number of mantissa bits ranging between 1 and 23, 8 exponent bits, and 1 sign bit. 

For example, the block diagram depicted in Figure 3.2.1.4-1 refers to an FPU configuration with float32 
additions/subtractions and bfloat16 multiplications and divisions. The float32 format has a 1-bit sign, an 8-
bit exponent, and a 23-bit mantissa, whereas the bfloat16 one has a 1-bit sign, an 8-bit exponent, and a 7-
bit mantissa. 

Values received as inputs and produced as outputs by the FPU are always encoded in the 32-bit float32 
representation (in addition to 32-bit integers, in the case of float-integer conversions). Operands to lower-
precision operations are truncated by discarding the corresponding number of least significant bits of the 
mantissa, while their results are conversely extended by padding the least significant part of the mantissa 
with zeros. Dedicated rounding logic is instantiated for each floating-point format employed by at least an 
operation in the FPU. 

Instantiating FP operations can reduce the area occupation, power consumption, and latency of the 
corresponding hardware logic, improving the energy efficiency of the computing platform. Software 
precision tuning techniques can aid in exploring trade-offs that consider the acceptable accuracy loss for 
the target workloads. 

3.2.1.5 ISA 

The FPU implements arithmetic operations corresponding to those defined for the single-precision (float32) 
format by the IEEE-754 standard, and it is therefore compatible with the instructions defined by the F single-
precision floating-point extension of the RISC-V ISA.  

All the floating-point formats supported by the FPU share indeed the dynamic range of IEEE-754 float32 
and have at most the number of mantissa bits of float32. 

As mentioned in Section 3.2.1.4, internal conversions to and from smaller-precision formats are performed 
by truncation and extension, respectively, thus no additional conversion instructions are required.  
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3.2.2 Floating-Point Unit for RISC-V (FPU) – UZL 

Part of Task 3.2 Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization.  

3.2.2.1 General Information 

Floating-Point Units are specialized arithmetic units for calculating floating-point arithmetic. In modern 
systems, they are highly integrated into the processor pipeline and support different arithmetic 
specifications such as IEEE 754 single precision (32bit) and double precision (64 bit). In addition, further 
definitions exist, addressing more specialized applications: for example, bfloat16 is used and supported by 
a wide range of Artificial Intelligence (AI) applications. 

3.2.2.2 Purpose and Scope 

The RISC-V ecosystem is highly adaptable and configurable. It is hence desirable that the RISC-V’s 
Floating-Point Unit is configurable and adaptable for different use cases as well. During the current runtime 
of the ISOLDE project, UZL researched and tested some of the already existing and Open-Source Floating-
Point Units of the RISC-V ecosystem. One (promising) example is the OpenHW Group’s Floating-Point Unit 
CVFPU which is capable of IEEE 754-2008 single-, double-, quad- and half-precision specification. With 
the development of a FPU with support for a wide range of floating-point arithmetic and compatible with 
different processor systems, UZL intends to focus on integrating selected and domain specific FPUs into 
the SoC system, like, for example, for the automotive demonstrator (owned by Continental). 

3.2.2.3 Place in the System 

The following description is based on the CV32E40P Core of the OpenHW Group but matches most of the 
existing FPUs. As shown in the CV32E40P core’s block diagram (Figure 3.2.2.3-1), the FPU (depicted 
inside the red box) is integrated into the processor pipeline with direct access to required operands. 
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Figure 3.2.2.3-1: Official CV32E40P block diagram including FPU (red box) 

3.2.2.4 Block Diagram 

The FPU core is interfaced to the RISC-V core. It is integrated to the pipeline of the processor and has 
access to the operands. The block diagram is depicted in Section 3.2.2.3. 

3.2.2.5 ISA 

No ISA modifications are required. Floating Point is already part of the ISA Specification: “F” (Single 
Precision), “D” (Double Precision), and “Q” (Quad Precision). 

3.2.2.6 Interfaces 

The FPU is interfaced into the pipeline with direct access to the Register File for operand access and write 
stage. 
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3.2.3 Scratchpad – IMT 

Part of Task 3.2 Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization.  

3.2.3.1 General Information 

In memory bound applications, memory accesses may represent an important bottleneck. The memory 
receives requests from many components and only can handle them sequentially. For a vector processor, 
sequential data access may have performance penalties. One possible solution is to employ multi-bank 
memories which employ two techniques: data duplication and data mapping.  

Assuming each memory bank allows one memory access per clock cycle, conflict-free parallel access 

means that by using N memory modules we can access N distinct data items in each clock cycle, one from 

each memory module. If two or more data items are required from the same memory bank, this creates a 

conflict, and the accesses will be serialized. 

The data duplication technique creates copies of the data stored in a memory module in two or more 
memory modules. That allows parallel access to these memory banks, allowing conflict-free parallel access 
to data in a simple and straight forward way. The important disadvantage is the hardware cost of duplicating 
the memory modules while not increasing the capacity we need to duplicate the memory module. Another 
possible disadvantage is related to coherency: writing data may lead to data coherency problems if 
synchronization is not handled correctly.  

The second technique is data mapping: distributing the data in multiple memory, so it can be accessed in 
parallel. When using data mapping, no additional memory modules are needed. However, the challenge is 
to optimally distribute data to these memory banks to allow conflict-free access.  

Our proposed Scratchpad Memory is based on PolyMem [Ciobanu2018] and uses the Memory Access 
Schemes originally used in the Polymorphic Register File [Ciobanu2013], [Kuzmanov2006]. 

3.2.3.2 Purpose and Scope 

A Scratchpad Memory is a personalized mapped memory that guarantees parallel conflict-free access for 
a limited selection of access patterns which are known at design time. It may improve performance for 
memory bound applications for which the memory access patterns are supported by the Scratchpad 
Memory. 

Our proposed Scratchpad Memory acts as a fast memory module that allows multi-lane, conflict-free access 
to multiple data simultaneously for selected access patterns. Our design supports the following access 
patterns: rectangle, row, column, transposed rectangle and main and second diagonal. Depending on the 
memory access scheme implemented, our Scratchpad Memory allows conflict-free access to one or more 
access patterns.  

This Scratchpad Memory is envisioned to have a configurable capacity (e.g., a few MB), and the data 
transfers to/from the Scratchpad Memory are managed manually by the programmer. 

3.2.3.3 Place in the System 

The Scratchpad Memory could be placed in two places in the system: inside a system component or as a 
standalone component. If inside the component, the Scratchpad give to user a simple and basic interface 
for control and data. As a standalone component, the system has an AXI Lite interface for configuration, an 
AXI Memory-Mapped (AXI-MM) interface to access main memory and multiple AXI Stream interface to 
send and get data to another component. 

Scratchpad Memory in a component 
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One use case scenario for Scratchpad is to be used inside an accelerator. The designers could use this 
Scratchpad Memory as a buffer, to store some data temporally to finish the job faster while reducing the 
communication with the slower main memory. In that scenario, all the control signals are driven by the 
accelerator and the Scratchpad handles multiple data items per request. An intuitive diagram is presented 
in Figure 3.2.3.3-1. 

 

Figure 3.2.3.3-1: Connecting a Scratchpad Memory to an accelerator. 

The default Scratchpad interfaces include control signals and multiple lanes to write and read data from 
this memory. Also, the Scratchpad Memory allows multiple parallel reading ports, obtained by duplication 
of memory modules. This multi-port feature makes the Scratchpad Memory suitable for an arithmetic 
accelerator. The full interfaces are presented in Figure 3.2.3.3-2. 

The simple control signals are 2D coordinates for writing and reading, memory organization and the access 
type. The access type is one of the six supported: i) rectangle; ii) row; iii) column; iv) main diagonal; v) 
second diagonal; and vi) transposed rectangle. There are multiple interfaces to write or read data from 
Scratchpad. The number of read/write elements is called the number of lanes and is a parameter set at 
design time. 
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Figure 3.2.3.3-2: Interfaces for Scratchpad Memory [Ciobanu2013]. The upper side is the basic interface, and the 
lower one is the interfaces extended by duplication. 

Scratchpad Memory as a component 

Another use case scenario is to use the Scratchpad as an independent component. In that way, the user 
has a wrapper over read/write operations and may unload the accelerator from some memory related tasks. 
The Scratchpad Memory components handle memory access and data synchronization.  

The Scratchpad Memory as a standalone component is presented in Figure 3.2.3.3-3. When the 
Scratchpad is a standalone component, the control signals are driven by a configuration register bank. This 
component is configured by the system via an AXI Lite interface. This configuration includes a memory 
interface that is connected to the main AXI interconnect to access the main memory. Furthermore, to allow 
high-speed communications with other components, the interfaces are AXI Stream. In that configuration 
the Scratchpad is configured from the outside.  

With a dedicated configuration interface from the AXI family, both the CPU and the accelerator can 
configure the Scratchpad, allowing the user to preload data in the Scratchpad Memory and potentially to 
improve performance. 
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Figure 3.2.3.3-3: Scratchpad Memory as a component 

3.2.3.4 Block Diagram 

The main components of the Scratchpad Memory are the memory banks modules and the logic that 
computes the addresses for every bank based on the selected Memory Access Scheme. The Memory 
Access Schemes supported [Ciobanu2013] are Rectangle Only (ReO) [Kuzmanov2006], Rectangle Row 
(ReRo), Rectangle Column (ReCo), Row Column (RoCo) and Rectangle Transposed (ReTr). The 
Rectangle Only scheme only supports accessing rectangles. ReRo, ReCo, Roco and ReTr support a 
minimum of two access patterns and are called multi-view memory schemes. The ReRo scheme supports 
memory accesses shaped as rectangles, rows (multiple elements from the same line), main and secondary 
diagonals. ReCo supports rectangles, columns, and main and secondary diagonals. The ReTr scheme 
allows access to rectangles and transposed rectangles. 

The internal structure of the Scratchpad Memory is presented in Figure 3.2.3.4-1. The Scratchpad Module 
receives the start 2D index and the memory access scheme. Based on them, it generates the addresses 
for each individual memory bank module. The data is read from the memory banks and finally a Data Shuffle 
rearranges the data to be passed to the user. 
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Figure 3.2.3.4-1: Internal organization of Scratchpad Memory, based on [Ciobanu2013] 

 

Figure 3.2.3.4-2 illustrates the scenario when the Scratchpad is employed as a standalone component, 
then additional modules are required. This standalone Scratchpad has a configuration unit, allowing for the 
Scratchpad Memory to be configured. A DMA engine handles communication with the main memory, 
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handling data reads and writes to/from the main memory. First-In-First-Out (FIFO) units are used to handle 
fast streams of data to other components. 

 

 

Figure 3.2.3.4-2: Internal architecture for Scratchpad as a component 

3.2.3.5 Clocking Strategy 

The Scratchpad may be employed in two modes: inside an accelerator or as a standalone component. If 
placed inside an accelerator, the Scratchpad requires one clock domain for memory banks. As a standalone 
component, the Scratchpad module has two clock domains: one clock domain for the configuration and 
memory interface and the second one for the AXI Stream (AXIS) interfaces. The synchronization between 
the memory clock domain and the stream interfaces is handled by employing asynchronous FIFOs. 

3.2.3.6 Reset Strategy 

When the Scratchpad Memory is integrated inside an accelerator it may require a reset signal for the 
memory banks. This depends on the target technology, as some Block Rams (BRAMs) have a reset signal 
that may be used to clear the memory data.  

When the Scratchpad Memory is used as a standalone component and the reset signal is active, then all 
the states machines are returned to initial state, all configuration registers return to default values and all 
FIFOs are flushed.  
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3.3 Monitoring Infrastructure  

Task 3.3 M3-M33, Task Leader: POLIMI  

Task 3.3 focuses on the development of components and methodologies that provide monitoring support 
for multiple purposes, ranging from performance monitoring in a safety-specific context to power and energy 
monitoring, via on-line hardware-software monitoring infrastructures that enable therefore the optimization 
of the overall system both at design time and at run time.  

On the one hand, a multicore statistics unit (BSC) is integrated as part of the safety island, while context-
aware performance monitoring counters are extended with context filtering capabilities to further strengthen 
the monitoring of the safety island (TRT) and a configurable and programmable co-processor dedicated to 
monitoring time contracts (OFFIS) can observe application-specific hardware and software timing 
properties. On the other hand, a dedicated methodology can deliver an on-line power monitoring 
infrastructure (POLIMI) while considering the accuracy, area overhead, and side-channel information 
leakage metrics as constraints in the power model identification phase. 

 

IP Lead 
Beneficiary 

Type Dependencies Licensing 

CA-PMC-IF TRT Core 
CA-PMC, CA-BUS 
(WP2)  

TBD 

RTPM POLIMI Core Monitored IP Proprietary 

SafeSU BSC Core None 
Permissive open 
source (MIT) 

TCCP OFFIS Core Safety Island, SafeSU 
Permissive open 
source 
(Apache-2.0) 

Table 3.3-1: Overview of contributions in Task 3.3 
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3.3.1 Context-Aware PMC Interface (CA-PMC-IF) – TRT 

Part of Task 3.3 Monitoring infrastructure. 

3.3.1.1 General Information 

The Context Aware Monitoring framework is a set of IPs to enhance the monitoring IPs with context 
information and standardize the same monitoring IPs deployed in an SoC. The context information is 
typically defined by a context controller which typically is a core defining the context in which the events 
monitored are issued. The Context Aware Monitoring framework is composed of 4 different IPs (or IP 
extensions): the CA-CORE, the CA-BUS, the CA-PMC (Section 3.1.3), and the CA-PMC-IF. 

3.3.1.2 Purpose and Scope 

The CA-PMC-IF module’s purpose is to provide a means for the system (e.g., main core, supervision core) 
to program the CA-PMC module the CA-PMC-IF is associated with and retrieve the counters from the CA-
PMC.  

In the context of ISOLDE, we will target the SoC caches as IP integrating the CA-PMC (and CA-PMC-IF to 
configure the CA-PMC and retrieve data from the CA-PMC). 

3.3.1.3 Place in the System 

The CA-PMCs are extended Performance Monitoring Counters to be placed in the different IPs of the 
system, as shown in the example in Figure 3.3.1.3-1. The CA-PMC-IF module is the module responsible 
for making the CA-PMC visible to the rest of the system. 

 

Figure 3.3.1.3-1: CA-PMC-IF - Place in the system 
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In the project's context, the Instruction and Data L1 Caches CA-PMC-IFs will be targeted, but it should be 
reusable in other IPs. 

3.3.1.4 Block Diagram 

The CA-PMC-IF definition is currently being actively discussed and a final architecture is not yet available. 
Figure 3.3.1.4-1 (taken from the CA-PMC description) shows a high-level block diagram displaying how the 
CA-PMC-IF is connected to the CA-PMC and an AXI bus. 

 

Figure 3.3.1.4-1: CA-PMC-IF - Block diagram 

3.3.1.5 Interfaces 

The CA-PMC-IF is connected with two different IPs:  

• The CA-PMC module, and  

• to an AXI bus to which it provides a memory mapped interface. 

AXI bus interface 

The CA-PMC-IF provides an AXI bus interface, providing a memory mapped access to the CA-PMC 
registers the CA-PMC-IF is connected with. Details on the exposed memory map are being defined. 

Dedicated interface between CA-PMC-IF and CA-PMC 

Register write/read interface controlled by the CA-PMC-IF is required between the CA-PMC-IF and the CA-
PMC. It provides the CA-PMC-IF the capability to read and write the CA-PMC configuration and counter 
registers. 
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3.3.2 Run-Time Power Monitoring Instrumentation (RTPM) – POLIMI 

Part of Task 3.3 Monitoring infrastructure. 

3.3.2.1 General Information 

The automatic generation of the run-time power monitoring infrastructure delivers periodic power estimates 
from the switching activity of a few select signals in the monitored components. 

3.3.2.2 Purpose and Scope 

The effectiveness of run-time optimization techniques that aim to improve the energy efficiency of a target 
computing platform is strongly tied to the quality of the measurements or estimates of power consumption 
provided by a run-time power monitoring infrastructure. The latter can perform indirect estimation of the 
dynamic power consumption of the target computing platform by analyzing its run-time statistics such as 
the switching activity of microarchitectural signals, monitored through dedicated hardware counters. 

3.3.2.3 Place in the System 

The monitoring infrastructure consists of a set of switching activity counters attached to corresponding 
inputs and output signals of the accelerators of which it is required to monitor dynamic power consumption. 
The power estimate value obtained by aggregating the counter values is exposed through a hardware 
register. 

3.3.2.4 Block Diagram 

 

Figure 3.3.2.4-1: RTPM - Block diagram 

A run-time power monitoring infrastructure is inserted in a generic RTL design as shown in Figure 3.3.2.4-
1. First, the design’s internal switching activity is correlated to its power consumption. This is done in order 
to identify a first-order linear power model.  

A selected subset of signals whose switching activity is selected as the input to such identified model is 
wrapped with hardware counters that monitor their switching activity. The collected values are periodically 
gathered and used to compute an estimate of the power consumption, which is exposed externally to be 
usable by a run-time management framework.  

The accuracy, the area overhead, and the side-channel information leakage of the monitoring infrastructure 
can notably be considered during the model identification phase. This allows to provide not only accurate 
estimates but also to satisfy the area and security requirements and constraints of the overall system. 
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3.3.3 Safety-Related Statistics Unit (SafeSU) – BSC 

Part of Task 3.3 Monitoring infrastructure. 

3.3.3.1 General Information 

The SafeSU is a modular and scalable Performance Monitor Unit (PMU) that can be connected to any on-
chip interconnect and allows multicore interference observability and controllability. 

3.3.3.2 Purpose and Scope 

The SafeSU builds on a number of components, namely, the Contention-Cycle Stack (CCS), the Request 
Duration Counter (RDC) and the Maximum-Contention Control Unit (MCCU). 

• The CCS offers observability features by providing multicore time-interference breakdown. 

• The RDC provides end users with an observability channel to monitor high-watermark latencies per 
event and core, as needed for interference bounding (e.g., during worst-case execution time 
estimation). 

• The MCCU offers controllability capabilities with interference quota monitoring and enforcement, 
alerting the user when allocated quotas are exceeded. 

3.3.3.3 Place in the System 

 

Figure 3.3.3.3-1: SafeSU - Place in the system 

The monitoring interface of the SafeSU depicted in Figure 3.3.3.3-1, is AMBA AHB and AXI compliant. The 

SafeSU is intended to be connected to those types of interfaces, and it is particularly useful if those 

interfaces have either multiple managers or are connected to subordinates receiving requests from multiple 

managers. For instance, its best location is normally connected to the interface used by the cores and/or 

accelerators to access shared caches or memory controllers so that ongoing traffic can be monitored, and 
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eventually compared to predefined quotas to ensure that no manager abuses the use of relevant shared 

resources.  

SafeSU’s programming port is compliant with AMBA APB, although it will be extended to AMBA AXI in the 
future. 

3.3.3.4 Block Diagram 

 

Figure 3.3.3.4-1: SafeSU - Block diagram 

The main components of the SafeSU are the following:  

• Self-test: configures the counters’ inputs to a fixed value bypassing the crossbar and ignoring the 
SoC inputs. This mode allows for tests of the software and the unit under known conditions.  

• Crossbar: routes any input event to any counter.  

• Counters: A group of simple counters with settable initial values and general control register.  

• Overflow: Detects counters' overflow. It can raise interrupts upon overflow with its dedicated 
interruption vector and per counter interrupt enable.  

• Quota: Deprecated as replaced by MCCU (it may be excluded in a future release).  

• MCCU (Maximum Contention Control Unit): Contention control measures for each core for the 
particular event type that has been programmed to be monitored. It can raise an interrupt if a 
contention threshold is exceeded. It accepts real contention signals or estimation through weights.  

• RDC (Request Duration Counters): Provides measures of the pulse length of a given input signal 
(watermark). It can be used to determine maximum latency and cycles of uninterrupted contentions. 
Each of the counters can trigger an interrupt at a user-defined threshold. 

3.3.3.5 Interfaces 

AMBA AHB/AXI interface 
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The AHB or AXI interface is a subordinate interface used to snoop traffic. It is fully compliant with the 
specification of the corresponding protocol. Note that, in general, a SafeSU instance supports only one of 
those interfaces. 

AMBA APB interface 

The AMBA APB subordinate interface is used to program the control registers of the SafeSU. The control 
registers are as follows: 

Main configuration and self-test 

 

Figure 3.3.3.5-1: SafeSU - Base Configuration Register (0x000) 

Reset and enable of overflow, quota, and regular counters' operations can be performed with the Base 
Configuration Register shown in Figure 3.3.3.5-1. All signals are active high.  

Self-test mode allows bypassing the input events from the crossbar and instead using a specific input 
pattern where signals are constant. This mode can be used for debugging. After the addition of the crossbar 
and debug inputs, there is a certain overlap. The same results can be achieved with the correct crossbar 
configuration. Nevertheless, it has been included in this release for compatibility.  

These are the self-test modes for each configuration value of the field Selftest mode part of the register 

shown in Figure 3.3.3.5-1:  

• 0b00: Events depend on the crossbar. Self-test is disabled.  

• 0b01: All signals are set to 1.  

• 0b10: All signals are set to 0.  

• 0b11: Signal 0 is set to 1. The remaining signals are set to 0. 
 

Crossbar 

 

Figure 3.3.3.5-2: SafeSU - Crossbar Configuration Register 0 (0x0AC) 

 

Figure 3.3.3.5-3: SafeSU - Crossbar Configuration Register 1 (0x0B0) 
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Figure 3.3.3.5-4: SafeSU - Crossbar Configuration Register 2 (0x0B4) 

 

Figure 3.3.3.5-5: SafeSU - Crossbar Configuration Register 3 (0x0B8) 

This feature allows routing any of the input signals of the SafeSU into any of the 24 counters of the SafeSU 
(see Table 3.3.3.5-1). Each one of the counters has a 5-bit configuration value. These values are stored in 
the registers shown in Figures 3.3.3.5-2, 3.3.3.5-3, 3.3.3.5-4 and 3.3.3.5-5. All the configuration values are 
consecutive. Thus, some values may have configuration bits in two consecutive memory addresses. 
Examples of this are Output 6, 12, 19 in our current configuration. As a consequence, the previous outputs 
may require two writes to configure the desired input signal.  

Configuration fields match one to one with the internal counters. So, the field Output 0 matches with 

counter 0, Output 1 with counter 1 and so on.   

As a usage example, suppose the user wants to route the signal pmu_events(0).icnt(0) to the internal 

counter 0. The field Output 0 of the register in Figure 3.3.3.5-2 shall match the index of the signal in the 

table of inputs. In this case, the index is 2. After this configuration, the event count will be recorded in 
counter 0. The addresses for counter values range between 0x04 and 0x60. 

Counters 

The unit in the default configuration contains 24 counters, 32-bit each. The memory address where each 
counter’s value can be accessed ranges between 0x04 and 0x60, as said before. Counter values can be 
read or written, thus allowing to set the initial value of the counters.  

Enable and reset are managed by the base configuration register from Figure 3.3.3.5-1.  

Counters can overflow. In such a case, the count will wrap around to 0 and keep counting. The next section 
(Overflow) describes how to enable the overflow detection interrupts. 
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Table 3.3.3.5-1: Crossbar outputs and SafeSU capabilities 

Overflow 

The user can enable overflow detection for each of the counters in the previous section (Counters). Enables 
are active high and individual for each counter, as indicated in the Overflow Interrupt Enable Mask 

register depicted in Figure 3.3.3.5-6. If a counter with overflow detection active wraps over the maximum 
value, the corresponding bit of the Overflow Interrupt Vector register depicted in Figure 3.3.3.5-7 will 

become 1, and AHB interrupt number 6 will become active.  

The default AHB interrupt mapping can be modified within the file ahb_wrapper.vhd. 
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Figure 3.3.3.5-6: SafeSU - Overflow Interrupt Enable Mask (0x064) 

 

Figure 3.3.3.5-7: SafeSU - Overflow Interrupt Vector (0x068) 

Quota 

This feature has been replaced by the MCCU and will disappear in future releases. Usage is not 
recommended. 

MCCU 

The MCCU allows monitoring for a subset of the input events and tracking the approximate contention that 
they will cause. Currently, events assigned to counters 0 to 7 can be used as inputs of the MCCU. Thanks 
to the crossbar, any of the 32 SoC signals can be used by the MCCU.  

Figure 3.3.3.5-8 shows the internal elements required to monitor the quota consumption of one core, given 
that there are four input events. When the events become active, they pass the value assigned in the weight 
register depicted in Figure 3.3.3.5-10 for the given signal to a series of adders. The addition is subtracted 
from the corresponding quota register, mapped to addresses 0x088 to 0x094. If the remaining quota is 
smaller than the cycle contention, an interrupt is triggered. 
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Figure 3.3.3.5-8: SafeSU - Block diagram of the MCCU mechanism for one core 

 

Figure 3.3.3.5-9: SafeSU - MCCU Main Configuration (0x074) 

 

Figure 3.3.3.5-10: SafeSU - MCCU Event Weights Register 0 (shared with RDC; 0x098) 

 

Figure 3.3.3.5-11: SafeSU - MCCU Event Weights Register 1 (shared with RDC; 0x09c) 

In the current release, the MCCU can be reset and activated with the respective fields of the MCCU Main 
Configuration register depicted in Figure 3.3.3.5-9. The fields labelled as Update Quota Core x are 
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used to update the available quota of each core (addresses 0x088 to 0x094). While Update Quota Core 
x is high, the content of the corresponding quota register (addresses 0x088 to 0x094) is assigned to the 

available quota, as configured in registers 0x078 to 0x084. Once released (low), the available quota can 
start to decrease if the MCCU is active. The current quota can be read while the unit is active.  

In the current release, each core can monitor two input events. The MCCU module is parametric. More 
events can be provided in future releases. Table 3.3.3.5-1 listing the outputs shows the available features 
for each crossbar output. Under the column MCCU, you can see towards which core quota the event will 
be computed. The unit provides one interrupt for each of the monitored cores. Quota exhaustion for cores 
3, 2, 1, and 0 is mapped to AHB interrupts 10, 9, 8, and 7, respectively.  

Weights for each monitored event are registered in the MCCU Event Weights Register x registers 

depicted in Figures 3.3.3.5-10 and 3.3.3.5-11. Currently, each weight is an 8-bit field. Each input of the 
MCCU maps directly to the outputs of the crossbar. Thus, the weight for the MCCU input 0 corresponds to 
the signal in crossbar output 0. 

RDC 

The Request Duration Counter or RDC depicted in Figure 3.3.3.5-12 is comprised of a set of 8-bit counters 
and comparators that allow monitoring the length of a CCS signal, recording the number of clock cycles of 
the longest pulse and comparing this number with the defined weight. 

 

Figure 3.3.3.5-12: SafeSU - Block diagram of the RDC mechanism 

The current release provides monitoring for crossbar outputs 0 to 7. The weights for each signal are shared 
with the MCCU and are stored in the RDC Event Weights Register x registers depicted in Figure 3.3.3.5-

14. Weights are 8-bit fields. Counters have overflow protection, preventing the count from wrapping over 
the maximum value. The maximum value for each event (watermarks), is stored in the RDC Watermark 
Register x registers depicted in Figure 3.3.3.5-15.  

The RDC shares the main configuration register with the MCCU (Figure 3.3.3.5-9). Through this register, 
the unit can be reset and enabled through the corresponding fields. Such fields are active high signals.  

The unit does provide access to the internal interrupt vector (Figure 3.3.3.5-13), but such information is 
redundant and may be removed in future releases. Given the current watermarks and assigned weights, 
the events responsible for the interrupt can be identified. The RDC interrupt has been routed to AHB 
interrupt 11. 
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Figure 3.3.3.5-13: SafeSU - RDC Interrupt Vector (0x0A0) 

 

Figure 3.3.3.6-14: SafeSU - RDC Event Weights Registers 0 and 1 (shared with MCCU; 0x098, 0x09C) 

 

Figure 3.3.3.6-15: SafeSU - RDC Watermark Registers 0 and 1 (0x0A4, 0x0A8) 

Software interface 

The control registers of the SafeSU, as well as the counters by the SafeSU monitoring the events must be 
accessed (modified and/or read) only by software components with appropriate privileges. To realize this, 
the SafeSU registers are mapped in specific physical addresses upon integration in the platform. The 
hypervisor (FENTISS’ XtratuM in the particular case of the SafeSU integration in ISOLDE) is in charge of 
managing privileges, allowing only specific partitions to be updated, in accordance with SafeSU’s registers.   

The preferred configuration consists of allowing only a single partition to modify SafeSU’s configuration 
registers and read SafeSU’s counters, whereas the other partitions would not be allowed to access those 
registers. XtratuM guarantees this behavior building on the MMU existing in the NOEL-V cores, which also 
realizes the RISC-V ISA hypervisor extension. 
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Overall, the XtratuM hypervisor provides space isolation for the SafeSU’s registers, hence achieving 
freedom from interference. This is in line with safety standards guidelines for items with integrity 
requirements. 

3.3.3.6 Clocking Strategy 

SafeSU is designed to share the same clock signaling used for the AHB or AXI interface where it is 
connected and whose input port is labeled as CLK. The module does not allow for different clocking regions 
between the programming (APB) and injection (AHB or AXI) interfaces. 

3.3.3.7 Verification Strategy 

The SafeSU verification strategy incorporates a custom testbench for the simulation environment, 
generating expected and unexpected input data from the observed AHB or AXI interface. Additionally, as 
described before, the SafeSU includes a self-test mode that allows to bypass the input events from the 
crossbar and instead use a specific input pattern where signals are constant. 
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3.3.4 Time Contract Monitoring Co-Processor (TCCP) – OFFIS 

Part of Task 3.3 Monitoring infrastructure. 

3.3.4.1 General Information 

This module is a modular/composable time contract monitoring co-processor in Safety Island. The stand-
alone monitors are developed in VE-VIDES [VE-VIDES], a German funded project but also builds upon 
earlier work [Tran2020] developed in EU funded projects, e.g., Productive4.0. This co-processor is 
designed to support a formal Contract-Base Design (CBD) language [Sangiovanni-Vincentelli2012]. 
Furthermore, it must accept the basic timing properties: Aging, Event Occurrence, and Reaction. Finally, 
TCCP should be able to monitor different properties simultaneously. The functional and performance 
requirements of TCCP are presented in Deliverable D1.2 (Section 3.3.2). 

3.3.4.2 Purpose and Scope 

TCCP monitors the execution of timing properties received from safety island infrastructure and validates 
them based on the given specifications in a contract-based language. This co-processor is used for safety 
and security. The result will be presented as violated or not violated as interrupt or Memory-mapped I/O 
(MMIO). 

3.3.4.3 Place in the System 

This module is safety-island co-located. It is not decided yet if this module is connected directly to the 
infrastructure of the Safety-Island or will be integrated into the SafeSU unit (Section 3.3.3), developed by 
BSC in Task 3.3 “Monitoring Infrastructure”. The idea of integration with SafeSU is to share the observation 
modules, such as the RDC developed in SafeSU. 

3.3.4.4 Block Diagram 

 

Figure 3.3.4.4-1: TCCP - Block diagram 

In Figure 3.3.4.4-1 the abstract schematic of the co-processor is presented. There is an interface to the 
safety-island infrastructure inside the co-processor, this could be realized using Trace Ingress Port, for 
example. This schematic shows the interaction of the individual components. The interface unit has a buffer 
to guarantee the execution of all monitoring requests. The Control unit is responsible for assigning the 
correct monitor to each request and load the specifications related to each request into the monitors. 
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Monitors (Aging, Event Occurrence, Reaction) are in the compute unit. There is more than one monitor for 
each monitoring property to be able to track different requests simultaneously. A local memory is required 
for storing and loading the monitoring specifications during the initialization and runtime configuration. 

3.3.4.5 Interfaces 

OFFIS considers connecting the TCCP to the Safety Island infrastructure interface. At the current stage of 
the design, OFFIS considers using the interface(s) used by SafeSU unit (Section 3.3.3) developed by BSC. 

3.3.4.6 Verification Strategy 

Our verification strategy incorporates custom testbench for the VHDL simulation environment to validate 
the functional components in the co-processor. For the system-level debugging, test programs will show 
expected timing violations that should be detected by the TCCP. 
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3.4 SIMD/Vector, AI Accelerator and Tensor Processor Unit 
Design  

Task 3.4, M3-M33, Task Leader: FotoNation 

The RISC-V architecture is developed with the perspective of extensibility in mind. Adding support for 
accelerators enhancing the basic RISC-V instruction set becomes thus straightforward. This task section 
gathers the modules designed to accelerate intensive mathematical computation operations. These mainly 
include the multiply and accumulate operations performed in matrix operations, with direct application to 
neural networks. Here we define the architecture of accelerators that target large-volume numerical 
computations like the Tensor Processing Unit (TPU, UNIBO), the Vector Processing Unit (VPU, ETHZ), 
Extension Platform (EXP, TUI) and Parallel Computing Accelerator (PCA, POLITO), or optimize the more 
specific computations involved by convolutional neural networks – the AI/ML Accelerator (AMA, FotoNation) 
and the Event-based CNN Accelerator (ECNNA, SAL). The technical solutions range from loosely coupling 
between the accelerator and the host RISC-V, where the integration is performed using AXI and/or AHB 
interfaces (AMA and ECNNA), to tightly coupling using the CV-X interface (VPU, PCA), or using both 
approaches (in TPU) or approaching a custom coupling (used by EXP). Most of the cores developed 
support both 8bit and 16bit floating point representations (in AMA, TPU and VPU), but also variable range 
from 8bit to 64bit (for VPU). Almost all of them use some AXI-based memory mapping scheme. 

 

IP 
Lead 

Beneficiary 
Type Dependencies Licensing 

AMA FotoNation Core None Proprietary 

ECNNA SAL Core None Proprietary 

PCA POLITO Core CVA6 
Permissive open 
source (SHL) 

TPU UNIBO Core 
CVA6, CV-X-IF, hwpe-
stream, hwpe-ctrl, HCI 

Permissive open 
source (Apache) 

VPU ETHZ Core CVA6, CV-FPU 
Permissive open 
source (SHL) 

Vector-SIMD 
Accelerator 

IMT Core 
CVA6, NOEL-V, CV-X-IF, 
Scratchpad 

Restrictive open 
source (GPL-3.0) 

EXP TUI Core 
CVA6, CV-X-IF, one or more 
AMBA interfaces 

Permissive open 
source (SHL) 

Table 3.4-1: Overview of contributions in Task 3.4 

  

https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/core-v-xif
https://github.com/pulp-platform/hwpe-stream
https://github.com/pulp-platform/hwpe-stream
https://github.com/pulp-platform/hwpe-ctrl
https://github.com/pulp-platform/hci
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cvfpu
https://github.com/openhwgroup/cva6
https://www.gaisler.com/index.php/products/processors/noel-v
https://github.com/openhwgroup/core-v-xif
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/core-v-xif
https://developer.arm.com/Architectures/AMBA
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3.4.1 AI/ML Accelerator (AMA) – FotoNation 

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design. 

3.4.1.1 General Information 

The embracement of artificial intelligence and machine learning based applications is currently on a rising 
trend. There is an increasing need to provide capable solutions on diverse scales. Whereas on large scale 
AI applications have shown spectacular results, on the small-scale applications are limited by power 
consumption and integration area capabilities. Machine learning based applications are typically computing 
intensive applications; hence the need to apply machine learning operators to vast volumes of data in an 
effective manner. 

One solution to this problem is to design power efficient Machine Learning (ML) accelerators. Fortunately, 

the ML operators are themselves highly parallelizable, due to the tensor-based nature of the data. Based 

on the Open Neural Network eXchange (ONNX) format, neural networks that define what operations and 

the order in which they should be applied to the data can be easily defined in a high-level language. It is 

then the responsibility of the engineer to come up with optimized hardware able to process those operations 

in a highly efficient and timely manner, and to develop a specific compiler that translates the high-level 

ONNX description into low-level instructions for this specific hardware. 

3.4.1.2 Purpose and Scope 

A hardware accelerator designed for computing ML operators should be efficient in both ways: regarding 
the power consumed and considering the duration of the processing. In applications such as real-time 
sensing, which use camera-based systems to perform image processing on the edge, both aspects are 
critical. 

The AI/ML accelerator design exploits the inherent parallelism associated with operators typically 

encountered in deep convolutional networks. It accelerates operations such as convolution, matrix 

multiplication, average pooling and element-wise operations like add or multiply. Due to the parallel nature 

of these operations, duplicated circuits working in parallel are employed to generate the results. This is 

performed efficiently from both time and power consumption. 

3.4.1.3 Place in the System 

Figure 3.4.1.3-1 shows the place of the AI/ML accelerator in the system. It can be noticed that all interfaces 
are standard AXI4 interfaces, meaning that it can be easily integrated in any system with a standard AXI 
interface. 
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Figure 3.4.1.3-1: AI-ML - Accelerator block diagram and associated system architecture 

The system requirements for integrating the AI/ML Accelerator are:  

• AXI4 system bus  

• CPU  
o Any CPU with AXI bus interfaces.  
o The processor is needed to control the accelerator: configure registers, start the 

processing, monitor the program running on the accelerator.  

• Interrupt Controller 
o At least one interrupt line is needed for the accelerator program done interrupt.  

• System Memory  
o Memory (local SRAM, ROM, external DDR, or flash) is needed for storing the CPU routines, 

accelerator program, parameters, and input/output data. 

3.4.1.4 Block Diagram 

A block diagram of the AI/ML accelerator is also provided in Figure 3.4.1.3-1. It shows all the main 
component modules and interfaces. The computing architecture is centered around the Accelerator Core 
that processes the operands stored into the Memory Banks. The parallelism is achieved by storing 
operands in parallel memories, thus achieving a processing speed in the range of 256 – 2048 multiply–
accumulate (MAC) operations per clock cycle. 

The AI/ML Accelerator has the following main features:  

• Accelerates most common neural networks layers/operations such as: Convolution, Pooling, 
Element Wise Add and Mul, Matrix Multiplication;  

• Each supported operation is defined by an instruction. Instructions can be aggregated into complex 
programs that describe the computation of complete neural networks;  

• Can operate autonomously or close together with an RISC-V CPU;  

• Can be used for both Neural Networks inference and training; 
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Easy to integrate in any system. All interfaces are standard AXI4 interfaces, 128bit wide. 

RISC-V Subsystem Main Features 

The RISC-V subsystem jointly works with the accelerator in the following way:  

• Configures, starts, and monitors the accelerator module;  

• Keeps track of accelerator program execution;  

• Provides flow control for complex programs;  

• Accesses the accelerator cache to perform operations that are not supported by the accelerator 
core;  

• Assist in debugging the accelerator;  

• Communicates to host processor (the host processor can be in fact the RISC-V processor);  

• Provides interface to DDR and flash external memories. 

Processing Flow 

A typical processing with the AI/ML Accelerator has the following steps:  

• Compile the AI/ML model and load the resulting program and parameters in the system memory;  

• Prepare the input maps/data in the system memory;  

• Power-up the AI/ML power island – if it is not already on;  

• Start the AI/ML clock – if it is not already on;  

• Configure the AI/ML registers;  

• Set the enable configuration bit for the AI/ML Accelerator;  

• Configure the Program DMA and start the DMA transfer of the AI/ML accelerator program;  

• The AI/ML accelerator starts fetching the program and executes the instructions:  

• The Data Read/Write DMA transfers are controlled from the accelerator program;  

• The CPU can monitor the progress of the program using optional interrupts and/or status registers;  

• The AI/ML Accelerator asserts the “done” interrupt when the program is completed;  

• The CPU can post/process or check the results;  

• If the idle status bit is set and if the accelerator is not needed again, the AI/ML clock can be gated;  

• Once the clock is gated, the AI/ML power island can be powered down. 

3.4.1.5 ISA 

The instruction set architecture defines the high-level operations supported by the AI/ML accelerator. They 
leverage its capability of operating independently of the host processor. As the ISA is still under 
development, in the following the supported operations are represented as programming API. 

/**  
  * Loads a data map from (external – DDR, Flash) system memory into  

  * accelerator’s cache (internal) memory  

  */  
void load(  

    void *   axi_addr,    // system memory address  
    uint32_t addr,        // cache memory start address  

    uint32_t width,       // map’s row width (in multiples of bytes  
                          //     given by data format)  

    uint32_t height,      // map’s number of rows  

    uint32_t line_stride, // row stride of the map in system memory  
    uint32_t format       // data format:   

                          //     0: FP16, 1: FP8,  
                          //     2: int8, 3: unit8   

); 
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/**  

  * Transfers a data map from cache (internal) memory to system  
  * memory.  

  */  
void save(  

    void *   axi_addr,    // system memory address  
    uint32_t addr,        // cache memory start address  

    uint32_t width,       // map’s row width (in multiples of bytes  

                          //     given by data format)  
    uint32_t height,      // map’s number of rows  

    uint32_t line_stride, // row stride of the map in system memory  
    uint32_t format       // data format:   

                          //     0: FP16, 1: FP8  

);  
  
/**  
  * Applies a 2D convolution on input composed of several channels. 

  */  
void conv2d(  
    uint32_t in_data_addr,  // cache memory input map address  
    uint32_t weights_addr,  // cache memory address for weights  
    uint32_t bias_addr,     // cache memory address for biases  
    uint32_t out_data_addr, // cache memory output map address  
    uint32_t in_channels,   // number of input channels  
    uint32_t out_channels,  // number of output channels  
    uint32_t data_width,    // input map’s row width (in bytes)  
    uint32_t data_height,   // input map’s number of rows  
    uint32_t kern_width,    // convolving kernel width  
    uint32_t kern_height,   // convolving kernel height  
    uint32_t in_stride,     // row stride of the input map  
    uint32_t out_stride,    // row stride of the output map  
    uint32_t padding        // padding added to all four sizes   
                            //     of the input  
  
);  
  
/**  
  * Applies a 1D convolution on input composed of several channels. 

  */  
void conv1d(  
    uint32_t in_data_addr,  // cache memory input map address  
    uint32_t weights_addr,  // cache memory address for weights  
    uint32_t bias_addr,     // cache memory address for biases  
    uint32_t out_data_addr, // cache memory output map address  
    uint32_t in_channels,   // number of input channels  
    uint32_t out_channels,  // number of output channels  
    uint32_t data_width,    // input map’s row width (in bytes)  
    uint32_t kern_width,    // convolving kernel width  
    uint32_t in_stride,     // row stride of the input map  
    uint32_t out_stride,    // row stride of the output map  
    uint32_t padding        // padding added to both sizes  
                            //     of the input  
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);  
  
/**  

  * Applies a 2D max pooling on input composed of several channels.  
  */  

void max_pool2d(  
    uint32_t in_data_addr,  // cache memory input map address  
    uint32_t out_data_addr, // cache memory output map address  

    uint32_t no_channels,   // number of channels  
    uint32_t data_width,    // input map’s row width (in bytes)  
    uint32_t data_height,   // input map’s number of rows  
    uint32_t kern_width,    // kernel width  
    uint32_t kern_height,   // kernel height  
    uint32_t in_stride,     // row stride of the input map  
    uint32_t out_stride,    // row stride of the output map  
    uint32_t padding        // padding added to both sizes  
                            //     of the input  
);  
  
  
/**  
  * Applies an activation function over the input map.  
  */  
void activation(  
    uint32_t in_data_addr,  // cache memory input map address  
    uint32_t out_data_addr, // cache memory output map address  

    uint32_t no_channels,   // number of channels  
    uint32_t data_width,    // input map’s row width (in bytes)  
    uint32_t data_height,   // input map’s number of rows  
    uint32_t in_stride,     // row stride of the input map  
    uint32_t out_stride,    // row stride of the output map  
    uint32_t function       // activation function type:  
                            //    0: ReLU, 1: Sigmoid,  
                            //    2: SiLU, 3: LeakyReLU  

);  
  
  
/**  
  * Applies a linear transform to the input data. Both weights size  
  * and in_data size equals to no_channels x data_width x data_height.  

  * out_data will be a scalar.   
  */  
void fully_connected(  
    uint32_t in_data_addr,  // cache memory input map address  
    uint32_t out_data_addr, // cache memory output map address  
    uint32_t weights_addr,  // cache memory address for weights  
    uint32_t bias_addr,     // cache memory address for biases  
    uint32_t no_channels,   // number of channels  
    uint32_t data_width,    // input map’s row width (in bytes)  
    uint32_t data_height,   // input map’s number of rows  
    uint32_t in_stride      // row stride of the input map  
);  
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 /**  
   * Applies element-wise addition on input maps.  
   */  
void eltwise_add(  
    uint32_t in1_data_addr, // cache memory map address for input1  
    uint32_t in2_data_addr, // cache memory map address for input2  
    uint32_t out_data_addr, // cache memory output map address  
    uint32_t no_channels,   // number of channels  
    uint32_t data_width,    // input map’s row width (in bytes)  
    uint32_t data_height,   // input map’s number of rows  
    uint32_t in1_stride,    // row stride of input 1 map  
    uint32_t in2_stride,    // row stride of input 2 map  
    uint32_t out_stride     // row stride of the output map  
);  
  
/**  
  * Applies element-wise multiplication on input maps.  
  */  
void eltwise_mul(  
    uint32_t in1_data_addr, // cache memory map address for input1  
    uint32_t in2_data_addr, // cache memory map address for input2  
    uint32_t out_data_addr, // cache memory output map address  
    uint32_t no_channels,   // number of channels  
    uint32_t data_width,    // input map’s row width (in bytes)  
    uint32_t data_height,   // input map’s number of rows  
    uint32_t in1_stride,    // row stride of input 1 map  
    uint32_t in2_stride,    // row stride of input 2 map  
    uint32_t out_stride     // row stride of the output map  
);  
 

/**  
  * Computes the matrix product of two tensors.  
  */  
void mat_mul(  
    uint32_t in1_data_addr, // cache memory map address for input1  
    uint32_t in2_data_addr, // cache memory map address for input2  
    uint32_t out_data_addr, // cache memory output map address  
    uint32_t in1_width,     // input 1 map’s row width (in bytes)  
    uint32_t in1_height,    // input 1 map’s number of rows  
    uint32_t in2_width,     // input 2 map’s row width  
    uint32_t in1_stride,    // row stride of input 1 map  
    uint32_t in2_stride,    // row stride of input 2 map  
    uint32_t out_stride     // row stride of the output map  

);  

  

3.4.1.6 Interfaces 

All interfaces are AXI4. Additionally, at least one interrupt line (program done) is needed for integration.  

Two address zones are needed in the system CPU address space:  

• Configuration and Status registers;  

• Address space for the AXI to Cache bridge.  
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The cache data banks store 16 x 16-bit values (also called channels) or 32 x 8-bit values at each address. 
The mapping between the cache addresses and the CPU/AXI address space is detailed in Figure 3.4.1.6-
1. Only AXI accesses aligned at addresses multiple of 16 bytes (128-bit) are allowed. 

 

Figure 3.4.1.6-1: AI-ML Accelerator - Address mapping scheme 

3.4.1.7 Sub-Modules 

AI/ML Sub-modules 

The AI/ML Accelerator contains the following main sub-modules:  

• Cache:  
o Used for both data (activation maps) and parameters (weights);  
o Parametrized size;  
o Multiple values can be read and written in each clock cycle, ensuring that the accelerator 

core is not starved of data.  

• Accelerator Core:  
o Contains a Configurable Parallel ALU;  
o The parallel ALU processes data from the cache and writes the results back to the cache;  
o Operates on 8-bit and 16-bit data. Has higher precision accumulators;  
o Parametrizable number of MACs: 256, 512, 1024, 2048;  
o Can use all available MACs each clock cycle;  
o Supported operations:  

▪ 1D, 2D Convolution  
▪ Pooling  
▪ Activation Function  
▪ Fully Connected  
▪ Element Wise  
▪ Matrix Multiplication  

o Preprocess / Postprocess modules prepare/arrange the data ensuring that the accelerator 
core is not data starved or backpressured: multiplexing, aligning, format conversion.  
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• Registers:  
o Contains all configuration and status registers;  
o Gives the CPU full control of the accelerator core when complex interaction between the 

core and the CPU is needed, or for debugging.  

• AXI to Cache Bridge  
o AXI4 Lite Slave interface;  
o Allows the CPU to directly access the cache;  
o It has a 128-bit-wide data interface, making it possible to be used by a CPU with Single 

Instruction Multiple Data (SIMD) support, providing access to 8 x 16-bit values or 16 x 8-
bit values per clock cycle.  

• Program Read DMA:  
o AXI4 Master interface;  
o Used to read programs, ensuring that the accelerator core is never starved of instructions.  

• Flow control  
o Decodes the incoming instructions from the Program Read DMA or from the CPU;  
o Controls the data flow through the processing pipeline, from cache read, through ALU 

processing, to writing back to the cache.  

• DMA Read/Write DMA  
o AXI4 Master interface;  
o Used for high-bandwidth data transfer between the cache and memories in the system 

(DDR, Flash, local SRAM);  
o Operate at the maximum available AXI bandwidth;  
o Used to read and write data (activation maps) and parameters (weights). 

CPU Sub-System Sub-Modules 

The following modules are required as part of a CPU (RISC-V) subsystem:  

• RISC-V CPU  
o Controls the RISC-V subsystem and the AL/ML Accelerator;  
o Supports floating point operations;  
o Support for SIMD processing for efficient processing of data in the accelerator cache;  

• Interrupt Controller  
o Manages the subsystem interrupts, including the accelerator interrupts;  

• SRAM 
o Local SRAM for the CPU use and for the accelerator data and program;  

• Bridge/mailbox  
o Optional modules for connecting and communicating with a host processor. 

3.4.1.8 Clocking Strategy 

The AI/ML Accelerator has two clock domains. Both clocks can be gated externally when the module is not 
in use.  

• AI/ML Accelerator clock  
o Used by all submodules;  
o The clock to each sub-module is gated when the sub-modules are not active;  
o The clock to each SRAM of the cache memories is gated anytime when there are no 

memory transactions;  

• AXI interface clocks  
o Only used by the AXI4 interface modules.  

Depending on the system/implementation (FPGA, ASIC technology) the two clocks can be asynchronous 
or can have the same frequency (in this case no synchronization logic between the two clock domains is 
needed). 
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3.4.1.9 Reset Strategy 

There are two asynchronous reset inputs, active low, one for each clock domains:  

• AI/ML Accelerator reset;  

• AXI4 reset.  

Additionally, software reset / initialization functionality is provided through the configuration registers. 

3.4.1.10 Power Management Strategy 

Clock Gating 

As mentioned above, the clocks to each AI/ML accelerator sub-module and SRAM instance are only active 
when the corresponding module/SRAM processes data. 

Memory Sleep 

Each SRAM instance inside the cache has its own sleep input. The sleep signals are automatically 
controlled by the control logic module. Any SRAM that is not needed for the current processing has the 
clock gated and is put to sleep. 

Power Gating 

The whole AI/ML accelerator can be placed on a separate power island. Once a program is completed, the 
accelerator power can be switched off as it is always reinitialized every time a new program is executed. 

3.4.1.11 Debugging Strategy 

The RISC-V processor has standard JTAG interface for in-circuit debugging.  

The AI/ML Accelerator provides several ways of debugging its program:  

• AXI to Cache Bridge – Provides direct access to all cache values;  

• Extra interrupt lines are available and can be used by the CPU to monitor the progress of the AI/ML 
Accelerator program;  

• Status registers give insight into the status of each AI/ML sub-module;  

• Single instructions can be pushed to the AI/ML Accelerator in debug mode, bypassing the program 
DMA module. 
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3.4.2 CNN Accelerator for an Event-Based Sparse Neural Networks 
(ECNNA) – SAL 

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design. 

3.4.2.1 General Information 

Convolutional neural networks (CNNs) have become a standard in computer vision given their capability to 
process complex visual data, in contrast to more hand-crafted traditional approaches. They are 
characterized by high complexity and require substantial amounts of memory, computing power and 
energy, which can be challenging in resource-constrained environments and applications. 

One of the promising ways to tackle this is through event-based processing, a paradigm that arouses 
inspired by the biological mechanisms that the brain uses to decode signals. This type of processing is 
highly sparse in nature, and therefore can be done with a much smaller memory footprint and savings in 
computation. 

This module is an event-based CNN accelerator capable of exploiting the inherent sparsity present in event-
based data. It supports convolution, maxpool and sparse fully connected. 

3.4.2.2 Purpose and Scope 

Because of the nature of event-based data, where information is only generated by changes in the visual 
scene, our accelerator is particularly suitable for dynamic environments and applications such as 
autonomous vehicles. 

3.4.2.3 Place in the System 

The accelerator has an AHB-Lite subordinate port that writes to a bank of configuration registers that set 
the following parameters: 

• Stride: supports only power of 2 values. 

• Padding. 

• Kernel size: maximum allowed size of 7x7 

• Activation functions: ReLU, and Leaky ReLU 

• Quantized precision: 8bits 

It can work either coupled with a DMA, or with the CPU that writes the data in and out from the accelerator 
through routines triggered by interruptions. 
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3.4.2.4 Block Diagram 

 

Figure 3.4.2.4-1: Event-Based CNN Accelerator - Block diagram 

The block diagram in Figure 3.4.2.4-1 illustrates a proposed system integration for the accelerator, modeled 
after an Application-Specific Integrated Circuit  (ASIC) recently fabricated using 65nm TSMC technology. 
The system features a CV32E40P RISC-V CPU (in the diagram replaced by the CVA6) connected via a 
64bits AHB-Lite Bus. This CPU commands the accelerator, which processes inputs from two peripheral 
devices: an Address Event Representation (AER2AHB) block for native interfacing with a Dynamic Vision 
Sensor (DVS) camera, and a Serial Peripheral Interface (SPI) slave block (SPI2AHB) that can receive 
events from an FPGA or another microcontroller. 

The system was integrated with five 16KiB SRAM memories. Two of these are allocated for data storage, 
one for storing weights, another for the program code, and the final one for holding the CNN layer 
configurations accessed by the CPU. Also, the system includes a DMA that, with a multi-QSPI peripheral 
(consisting of eight QSPI master operated in parallel under a shared controller), enables high-speed data 
transfers up to 1.6Gbps. Peripheral interfaces also include a 32-bit General-Purpose Input/Output (GPIO), 
and two timers connected to an APB bus, which facilitate events integration and timestamping tasks. 

3.4.2.5 Debugging Strategy 

The ASIC version counts with an SPI peripheral to AHB-Lite master peripheral (SPI2AHB in the block 
diagram) that works as a debugger. For the FPGA implementation, any debugging strategy can be used 
where an AHB-Lite controller port can be reached. Additionally, the accelerator counts with multiple 
interruption lines that can trigger the CPU after each processing step. 
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3.4.3 Parallel Computing Accelerator (PCA) – POLITO 

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design. 

3.4.3.1 General Information 

The parallel computing accelerator is a loosely coupled processing cluster architecture, which can operate 
with approximate arithmetic units also supporting on-line change of the approximation level. 

3.4.3.2 Purpose and Scope 

In the last years AI and ML have gained a lot of popularity in different fields ranging from automotive, to 
aerospace, speech recognition, image, and video processing, thus enabling to possibilities and challenges. 
However, most of the computing schemes and algorithms employed in AI and ML have noteworthy 
computational complexity, which can be difficult to manage in software. As a result, hardware accelerators 
are an interesting and viable solution to such a problem.  

From another perspective, most of the applications which take advantage of AI and ML exhibit intrinsic 
resilience to arithmetic errors. For this reason, the approximate computing paradigm can be exploited to 
implement approximate arithmetic operators that introduce errors in the computed values with negligible 
performance loss in terms of accuracy.  

A loosely coupled accelerator, based on an approximate processing cluster architecture, offers the 
possibility to accelerate the computation in an approximate computing fashion. This is achieved by relying 
on a set of processing engines working concurrently. 

3.4.3.3 Place in the System 

The approximate computing cluster is loosely coupled to the CVA6 system CPU via the system-level 
crossbar. Additional AXI ports are used to access the system memory through an internal DMA unit. 

 

  

Figure 3.4.3.3-1: Parallel Computing Accelerator - Place in the system 
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3.4.3.4 Block Diagram 

 

Figure 3.4.3.4-1: Parallel Computing Accelerator - Block diagram 

As shown in Figure 3.4.3.4-1, the proposed parallel computing accelerator relies on an approximate 
processing cluster architecture. The cluster is made of a programmable number of approximate processing 
elements, each of which contains a register file and an ALU. The accelerator can be configured via different 
parameters. Part of these parameters (such as the maximum number of processing elements and the 
maximum precision) are configured at design time, while other parameters (such as the approximation 
level) can be set at the run-time by writing configuration registers. These registers’ content triggers proper 
masking mechanisms to change the approximation level during the computation to save power. The 
accelerator is connected to the CVA6 system architecture through an AXI interface, and it processes a 
subset of ALU operations in approximate mode. 
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3.4.4 Tensor Processing Unit (TPU) – UNIBO 

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design. 

3.4.4.1 General Information 

A Tensor Processing Unit (TPU) speeds-up FP matrix-matrix, matrix-vector, and vector-matrix operations 
through a simplified programming interface, providing memory-mapped configuration registers that can also 
be accessed through an eXtension Interface (XIF), supporting 8-bit and 16-bit precision. 

3.4.4.2 Purpose and Scope 

A hardware TPU for matrix multiplication in the space domain offers significant advantages over 
programmable multicore accelerators in terms of both performance and energy efficiency. The primary 
reason for this superiority lies in the specialized nature of TPUs, which are explicitly designed to handle the 
operations fundamental to all Deep Learning and Machine Learning models, such as high-throughput matrix 
multiplications and additions.  

TPUs use arrays of arithmetic units specifically optimized for tensor operations, enabling the execution of 
thousands of operations in parallel to achieve higher throughput and lower latency in matrix multiplication 
tasks. In contrast, programmable multicore accelerators, while versatile, are not specifically optimized for 
such operations, leading to less efficient execution of high-volume matrix multiplications due to their more 
generalized processing cores.  

TPUs also provide high energy efficiency. Their specialized hardware is designed to maximize operations 
per watt of power consumed, a critical consideration in space applications where power availability is 
limited. TPUs achieve this efficiency through optimizations such as reduced precision arithmetic, which is 
suitable for neural network computations and significantly reduces power consumption with reduced 
accuracy loss. Programmable multicore accelerators, on the other hand, tend to consume more power for 
equivalent tensor operations because they lack these specialized optimizations and often operate at higher 
precision than necessary for the task. 
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3.4.4.3 Place in the System 

 

Figure 3.4.4.3-1: Tensor Processing Unit - Place in the system 

The TPU is localized inside of a tensor processing cluster together with a DMA controller, RISC-V, and 
scratchpad memory. This is shown in Figure 3.4.4.3-1. Figure 3.4.4.3-2 shows two different mechanisms 
under exploration to control the TPU. In the leftmost option, the TPU is controlled by means of a hwpe-ctrl 

target11 exposing a set of memory-mapped registers. In the rightmost option, the TPU is controlled by 
means of direct communication between the processing core's register file and a set of registers in the TPU 

via an instruction-set extension realized using the CORE-V XIF interface12. 

 

 

11 https://github.com/pulp-platform/hwpe-ctrl  

12 https://github.com/openhwgroup/core-v-xif  
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Figure 3.4.4.3-2: Tensor Processing Unit - Controlling 

3.4.4.4 Block Diagram 

 

Figure 3.4.4.4-1: Tensor Processing Unit - Block diagram 

Figure 3.4.4.4-1 details the internal architecture of the Tensor Processing Unit. The data path is constituted 
of a series of Computing Elements (CEs) in a systolic array configuration. The default array size is L=12 
rows x H=4 columns. Each CE contains a 16-bit floating point fused-multiply-add (FMA) unit and P=4 
pipeline stages. The systolic array is fed by one stationary input (X) and one non-stationary input (W) 
broadcasted along the column direction. Both are streamed through a high-bandwidth streamer using the 

Heterogeneous Cluster Interconnect (HCI) protocol13. The output buffer (Z) can also be preloaded with 
existing content (Y) to implement a complete General Matrix Multiply (GEMM) functionality. 

 

 

13 https://github.com/pulp-platform/hci  
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3.4.4.5 Power Management Strategy 

Dynamic clock gating of the internal computing elements depending on the utilization in the executed kernel. 
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3.4.5 Vector Processing Unit (VPU) – ETHZ 

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design. 

3.4.5.1 General Information 

The RISC-V vector accelerator with multi-precision capabilities is a tightly coupled accelerator designed to 
work in tandem with the CVA6 Application-Class RISC-V core to accelerate parallel workloads with support 
for multiple data formats. 

3.4.5.2 Purpose and Scope 

In an era dominated by data, the demand for computational power has skyrocketed, particularly in ML and 
signal processing. These domains are characterized by their intensive computational requirements, often 
necessitating the manipulation and analysis of vast datasets to derive meaningful insights. A pivotal 
challenge in these areas is the efficient handling of multi-precision data formats, which vary in precision 
and are critical for optimizing performance and accuracy in computational tasks. Addressing this challenge 
requires innovative hardware solutions capable of accelerating these workloads while maintaining flexibility 
in data precision.  

To effectively tackle these challenges, we design a RISC-V vector processor with multi-precision 
capabilities, following the RISC-V V 1.0 specifications. This processor aims to enhance the computational 
efficiency of ML and signal processing applications by offering tailored support for multi-precision data 
formats. By leveraging the RISC-V architecture, known for its simplicity, modularity, and extensibility, this 
project endeavors to introduce a versatile solution that can address the evolving demands of these 
computationally intensive fields. 

The vector accelerator will be able to accelerate parallelizable workloads from various domains (ML, signal 
processing, linear algebra, etc.) and support multiple integer and floating-point data formats from 64 bits 
down to 8 bits. The vector accelerator targets higher performance and efficiency if compared to the scalar-
only computation of the same task, as a single vector instruction triggers the computation of multiple 
elements in parallel, amortizing the instruction fetching-decode-issue cost more effectively than its scalar-
only counterpart. To maximize performance, our vector accelerator exploits lane-parallelism and packed-
SIMD parallelism. 

3.4.5.3 Place in the System 

 

Figure 3.4.5.3-1: Vector Processing Unit - Place in the system 
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The system architecture is described in Figure 3.4.5.3-1. The vector accelerator is tightly coupled to CVA6 
with a custom or XIF-inspired [OpenHWGroup2021] interface and communicates via AXI with the Memory. 
CVA6 is the RISC-V core and dispatches all the RISC-V vector instructions to the vector accelerator. 

3.4.5.4 Block Diagram 

 

Figure 3.4.5.4-1: Vector Processing Unit - Block diagram 

The architectural diagram in Figure 3.4.5.4-1 refers to an implementation that supports a custom interface 
between CVA6 and the vector accelerator (Ara2 in the schematic).  

The vector accelerator is composed of parallel lanes (L0 -> L(n-1)) that contain chunks of the Vector 
Register File (VRF), the internal buffer for vector elements. Each lane also contains a vector ALU and a 
vector Multiplier and Floating-Point Unit (VMFPU). 

The vector accelerator comprises vector CSRs as specified by the RISC-V V 1.0 specifications, a decoder, 
a sequencer to account for dependencies between instructions, a private vector load-store unit (AXI-
compliant), a slide unit (SLDU) to handle vector permutations and shuffles, and a mask unit, to work with 
1-bit-granular mask vector, which implement predicated execution. 

The architecture bus is 64-bit * #Lanes, while the memory data bus is 32-bit * #Lanes. 

3.4.5.5 ISA 

The vector accelerator is based on RISC-V V 1.0 [RVI2021]. 
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3.4.5.6 Interfaces 

The architecture communicates with the memory through AXI protocol, and with a custom accelerator 
interface or XIF-inspired interface with the CVA6 scalar core. 

3.4.5.7 Sub-Modules 

The vector accelerator cannot fetch instructions from memory; therefore, it needs a scalar core that can 
dispatch them. Moreover, it internally uses the CVFPU to process floating-point data. 

CVA6 

CVA6 [OpenHWGroup2024] is a RV64GC Application-Class scalar that, via a custom or XIF interface, can 
dispatch instructions to a tightly coupled accelerator. 

CVFPU 

CVFPU [OpenHWGroup2023] is the floating-point unit used within the architecture, currently maintained by 
OpenHW Group. 

3.4.5.8 Reset Strategy 

The module is reset with an active-low reset shared by all the architecture modules. All the internal 
sequential status is reset, except for the internal vector register file, which is implemented with SRAM banks. 
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3.4.6 Vector-SIMD Accelerator – IMT 

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design. 

3.4.6.1 General Information 

SIMD is a processor able to process multiple data elements in parallel with a single instruction. A classical 
processor can process a single data element per instruction. The SIMD accelerator exploits available data 
level parallelism and may improve performance. The SIMD processor may also reduce the size of the 
program code as fewer instructions are needed to process the data. However, vector processors need to 
define the vector size, load data, compute them and write back. On scalar processors, work is performed 
on one element at the time and overhead instructions to perform index computation and looping are 
required.  

The SIMD processors are also called vector processors and, like scalar processors, have a register file. In 
a vector register the user can store multiple data elements. Some common dimensions for this kind of 
register are 128 bits, 256 bits or 512 bits. These registers may also allow narrow data types for subword 
level parallelism. For example, if you have a vector register of 128 bits, you can store four integer numbers 
of 32 bits, or 16 8 bits integers. 

A vector register typically stores multiple elements in it. For a vector processor, for each vector lane there 
exists an arithmetic unit allowing parallel processing.  

Common applications for vector processors are operations like addition, subtraction, multiplication, and 
addition of all vector elements. Other applications are matrix operations like matrix addition (usually handled 
like the vector addition), matrix multiplication and convolution – operations that are very common in AI. 

This vector processor requires understanding of the hardware platform, the algorithm and the parallelization 
of the data. At the design stage, the programmer needs to be aware of the dimensions of the vector 
registers; these limit how much data can be loaded into the register and processed in parallel.  

The use of vector registers may imply a lot of changes in source code, and sometimes data organization in 
memory needs to be changed. 

3.4.6.2 Purpose and Scope 

Canonical vector processors help improve the speed; they have been proved to have great computation 
capabilities. There are still some limitations, e.g., the registers' fixed dimension and their small storage size. 
As a result, the conversion of the source code from a scalar CPU to a vector one requires some changes. 
Also, the traditional vector processors lack support for 2D vectors.  

We propose an accelerator for matrix operations, with applications in AI. The accelerator is tightlycoupled 
to the CPU, and the new instructions will simplify coding and improve programming experience. 

Our SIMD/Vector Accelerator supports operations such as matrix addition, subtraction, multiplication, 
element-by-element multiplication, element-by-element division and convolution. The accelerator features 
a reconfigurable register file and a simple programming interface. The user only specifies the operation and 
operands. The 2D vector accelerator can operate with a large set of data types, from different sized integer 
representations to floating point ones. 

3.4.6.3 Place in the System 

We want to place the accelerator very close to the core to achieve high speed communication. The 
accelerator is tightly coupled with the core and features a dedicated memory interface, see Figure 3.4.6.3-
1. 
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The accelerator-core interface is the CoreV eXtension Interface (CV-X-IF). This interface allows us to 
extend RISC-V ISA and enable access to core registers.  

 

Figure 3.4.6.3-1: Vector-SIMD Accelerator - Place in the system 

Because memory bandwidth may represent bottleneck for memory bound applications, a dedicated 
memory interface will be added to the vector accelerator. This interface relieves the main core from memory 
operation and allows the accelerator to work independently. Because the most popular interfaces in SoCs 
are from the AMBA family, the memory interface is an AXI-MM. The accelerator and the core use the same 
address space; both memory interfaces use the same interconnect. 

3.4.6.4 Block Diagram 

The internal architecture is presented in Figure 3.4.6.4-1. The main components of the accelerator are the 
Control Unit, the Register File and the Arithmetic Unit.  
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Figure 3.4.6.4-1: Vector-SIMD Accelerator - Internal architecture 

The most important component is the Control Unit. This component gets instructions from the scalar CPU 
core and exchanges data using the core registers. An important feature for our SIMD/vector accelerator is 
the software defined 2D vector registers. Based on the operand and their sizes, the fastest track for the 
vector operation is decided.  

The Register File is based on the Polymorphic Register File (PRF) and PolyMem [Ciobanu2013, 
Ciobanu2018], which represent the base for the IMT Scratchpad memory described in Section 3.2.3. The 
Register File Organization Table (RFOG) stores the defined registers, their size, data type and base 
address. This component has a dedicated connection to the main memory, to get the highest bandwidth 
for main memory related operations. The Register File communicates with the Arithmetic Unit via three data 
streams: two of them feed the input operands and the other one gets back the results. All streams have 
multiple lanes and send data in parallel.  

Figure 3.4.6.4-2 presents an example of a software defined register table and data in memory. On the right 
side of the figure is presented the Register File organization table. It stores the specification of every 
register: width, height, start position, data type and whether the register is defined. On the left side there is 
a visual representation of that register. 
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Figure 3.4.6.4-2: Vector-SIMD Accelerator - Example of software defined register in register file, based on 
[Ciobanu2013]. 

The Arithmetic Unit gets the data from the Register File, computes it and sends the results back. The data 
type is versatile and can operate with a large set of data types: integer and floating point on different bit 
lengths. The Arithmetic Unit has two types of circuits, one Array Arithmetic Unit for fast convolution and 
matrix multiplication, and another Vector Arithmetic Units, parallel arithmetic units for addition, subtraction 
and cross product. 

3.4.6.5 ISA 

The CV-X-IF interface sends only the invalid opcodes to the decoder. From the perspective of the main 
core this means that this custom instruction needs to have the seven less significant bits storing the opcode. 
Also, to gain access to core registers, custom instructions are required to strictly follow RISC-V instruction 
encoding. The source registers, rs1 and rs2 need to be in specific locations. 

The RISC-V ISA was designed to be extended with custom opcodes, and for that purpose a dedicated 
range of opcodes for ISA extension is available. For convenience we chose the first value from that interval. 
For our accelerator the opcode value is configurable. After many iterations we managed to use only one 
opcode, and with the funct3 field (see RISC-V base instruction formats) we identified the instruction format 

and the meaning of it. Because we use only one opcode, that also is configurable, it means that this 
accelerator is suitable to integrate with other accelerators that use CV-X-IF.  

The ISA includes instructions to define 2D register, their sizes, data type and their base address, 
instructions to load and store data from register file, support for masking mode, synchronization instruction, 
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sectioning instructions and algebraic instructions. Accelerators allow vector-vector and vector-scalar 
operations. The supported operations are addition, subtraction, multiplication, element-by-element division, 
element-by-element multiplication and convolution.  

Table 3.4.6.5-1 presents the instructions, their RISC-V encoding type, source of the registers and data for 
supplementary field (funct3 and funct7). The v2ddef instruction defines a 2D vector, get width and height 

from core register, and on func7 store the data type. There are two instructions for main memory access 

that have the same format as load and store in RISC-V ISA. The most important instruction types are .vv 

and .vs. These instructions handle mathematics operations and the difference between those two 

instructions is the .vv type works with two 2D vector and another one (.vs) works with one 2D vector and 

one scalar accessed from the scalar core register file.  To fully define a register, three instructions are 
required: one to define register dimensions (v2ddef), one to define data type (v2dtype) and the last one 

to define base address (v2dbase). A dedicated instruction allows 2D register copy, the v2dmov2d instruction. 

There is also an instruction to support sectioning (v2dsetvl). Accelerators could work in masking mode; 

two instructions enable or disable this function (maskon, maskoff). To populate the masking array, two 2D 

accelerators registers can be compared element-by-element, or a 2D register can be filled with a scalar 
value. Our accelerator works in asynchronous mode, and with a dedicated instruction the user can 
synchronize the main core with the accelerator.  

Detailed information about instructions is provided in Table 3.4.6.5-3. The arithmetic instructions are of type 
R and on funct7 field stores the operation type. All supported operation and their encoding are provided 

in Table 3.4.6.5-2. 

Mnemonic  Type  Opcode  rs1 place  rs2 place  rd place  funct3  funct7  

v2ddef  R  0001011  core  core  acc  000  -  

v2dtype  I  0001011  core  -  -  001  -  

v2dsetvl  R  0001011  acc  acc  -  111  -  

v2dmov2d  I  0001011  acc  -  acc  010  -  

accsetl.r  I  0001011  core  -  -  100    

accsetl.i  I  0001011  core  -  -  101  -  

v2dsgt.vv  R  0001011  acc  acc  -  011  -  

v2dsgt.vs  R  0001011  core  acc  -  110  -  

v2dbase  I  0001100  core  -  acc  000  -  

v2dld  I  0001100  core  -  -  001  -  

v2dst  I  0001100  core  -  -  010  -  

*.vv  R  0001101  acc  acc  acc  000  See Table 
3.4.6.5-2  

*.vs  R  0001101  core  acc  acc  111  See Table 
3.4.6.5-2 

sync  I  0001110  -  -  -  000  -  

maskon  I  0001110  -  -  -  011  -  

maskoff  I  0001110  -  -  -  010  -  

Table 3.4.6.5-1: Vector-SIMD Accelerator - Main instruction format and operand sources 
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Instruction 
name  

Operation  funct7  Comment  

vadd2d  A+B  0000001    

vsub2d  A-B  0000010    

vcnv2d  Convolution  0000100  rs2 as kernel matrix  

vdiv2d  A/B  0001000  Element by element  

vmul2d  A*B  0100000  Matrix multiplication  

vsmul2d  A*B  1100000  Cross product, element by element multiplication  

Table 3.4.6.5-2: Vector-SIMD Accelerator - Operations list 

Mnemonic  Name  Description  

v2ddef  Vectors define  This instruction defines a vector register, the output is a vector in 
accelerator. As input get width and height, from the core registers in 
rs1 and rs2. In the funct7 field is encoded the data type.  

v2dld  Vector load  This instruction loads data from the main memory in the register file. 
The format is the RISC-V one. The start address in main memory is 
rs1 + immediate.  

v2dst  Vector store  This instruction stores data from the register file in main memory. The 
format is the RISC-V one. The destination address in main memory 
is rs1 + immediate.  

*.vv  Vector-vector op  This instruction takes three accelerator registers, two as source and 
one as result. The supported matrix operations are addition, 
subtraction, multiplication (matrix-matrix and element-by-element), 
division (element-by-element) and convolution  

*.vs  Vector-scalar op  This instruction takes two vectors register and one core register, one 
vector register is the destination one and the other one is source for 
operation with scalar. The supported operations are addition, 
subtraction, multiplication and division.  

v2dtype  Set data type  If data in rs1 is 0, then all register gets the same data type, else only 

the rd register get that type.  

v2dsetvl  Set 2D vector 
length  

This instruction is for sectioning. The rs1 register is for X direction 

and rs2 instruction is for Y direction.  

v2dmov2d  Move 2D vector 
data  

Copy register data from one to another. rs1 is source register, rd is 

destination register  

accsetl.r  Set number of 
lanes  

Set number of lanes, data from register, rs1 store this data.  

accsetl.i  Set number of 
lanes by 
immediate  

Set number of lanes, by immediate data.  

v2dsgt.vv  Set greater than  Set 1 in masking array if rs1 < rs2. rs1 and rs2 are accelerator 

registers. 
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v2dsgt.vs  Set greater than  Set 1 in masking array if any element of rs1 is less than rs2. rs1 - 

2d accelerator data, rs2 - core scalar data.  

v2dbase  Set register base 
address  

Set accelerator register base address.  

sync  Synchronization  By default, the accelerator works in asynchronous mode. After 
fetching an instruction, it will flag the instruction as done. This 
synchronization instruction stalls the scalar core until the accelerator 
instruction is completed and all data is written back to the main 
memory.  

maskon  Start working on 
masking mode  

Working with masking array.  

maskoff  Stop working on 
masking mode  

Working without masking array.  

Table 3.4.6.5-3: Vector-SIMD Accelerator - Instruction with detailed explanations. 

3.4.6.6 Interfaces 

We decided to go with a tightly coupled accelerator. For the RISC-V cores, OpenHW group defined a 
dedicated accelerator interface. The interface is called CV-X-IF and it is very versatile and easy to extend. 
The scalar core sends to the accelerator only the core’s invalid opcodes and the accelerator has access to 
the scalar core’s registers.  

The second interface we need is one for memory access, and there are multiple solutions. We decided to 
deliver a solution simple to integrate. We decided to use an AXI interface because in modern systems the 
AMBA buses are very commonly used. 

CV-X-IF 

CV-X-IF is an interface available on specific RISC-V cores. This interface was designed for tightly coupled 
accelerators. CV-X-IF uses a dedicated protocol to send the unknown opcodes to an external unit. 
Furthermore, this interface allows read and write access to the scalar core registers. Additionally, this 
interface includes a handshake method to notify the scalar core when the instruction is done.  

Currently this interface is implemented in NOEL-V and CVA6 cores. With this interface, an accelerator could 
be coupled to a multicore microprocessor, because every core has a unique identifier associated. 

AXI-MM 

We wanted a common interface for memory access. The most used interfaces in modern SoCs come from 
the AMBA family (designed by ARM). It defines interfaces with different performance levels targeting 
various applications. 

The AXI-MM is an AMBA interface designed for data transfer. 

3.4.6.7 Clocking Strategy 

The accelerator has two interfaces on two different buses. This implies the accelerator already has two 
clock domains. The internal logic will work at a different and higher clock speed. Inside the accelerator there 
are two components: the Register File and the Arithmetic Unit. These work at different speeds, so a design 
space exploration to accommodate that is to be employed. 

Working on multiple clock domains requires extra logic. This is needed to prevent metastability and ensure 
data integrity. We opted for two solutions: asynchronous FIFO and clock crossing synchronizing. The 
asynchronous FIFO is used where there is a large and fast data exchange, like communication between 
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Register File and Arithmetic Unit. The clock crossing synchronization is used for control signals, because 
the changes are very slow. The Control Unit signals are synchronized with the destination components. A 
detailed clocking strategy and synchronization is presented in Figure 3.4.6.7-1. 

 

Figure 3.4.6.7-1: Vector-SIMD Accelerator - Clocking scheme 

3.4.6.8 Reset Strategy 

The accelerator will work with an asynchronous active in low reset. Both buses provide this type of reset. 
Because we have two resets, we will combine them with an AND gate to have a single reset signal for 
accelerators. For detailed reset scheme see Figure 3.4.6.8-1. 

The reset will erase all software defined registers, reset the valid flag, and set all of the other fields to zero. 
Upon resetting of all the counters, the user configuration will be also set to zero. It will not clear the 
scratchpad memory. 
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Figure 3.4.6.8-1: Vector-SIMD Accelerator - Reset scheme 
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3.4.7 Extension Platform (EXP) – TUI 

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design. 

3.4.7.1 General Information 

The Extension Platform (EXP) is a component that can be instantiated in a RISC-V based SoC. The 
architecture of the EXP comprises data processing units, a memory and an interconnection network 
alongside the required control logic. A data processing unit is named Processing Engine (PE). It is formally 
defined as a digital design employed to accelerate computations often found in the digital signal processing 
domain. One such unit implements a part of the Coordinate Rotation Digital Computer 
(CORDIC) [Walther2000] dataflow. Another example is the computation of streamed Discrete Fourier 
Transform (DFT). These units can be viewed as operators processing the input data. The EXP architecture 
allows for composition of these operators to reduce latency. 

3.4.7.2 Purpose and Scope 

EXP's main purpose is to allow simultaneous processing of data words (SIMD) with a low latency. EP 
should mainly target digital signal processing specific computations in a streaming input/output fashion. A 
goal is to permit composition of computations to further contribute to CPU offloading. 

3.4.7.3 Place in the System 

 

Figure 3.4.7.3-1: Extension Platform – Place in the system 

EXP is presented in Figure 3.4.7.3-1. EXP is the generic name of the hardware module that incorporates 
computation specific VPUs. EXP is connected to the RISC-V core using a CV-X-IF interface. EXP has a 
high bandwidth link to the main memory for large size data transfers (blocks, vectors). 
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3.4.7.4 Block Diagram 

 

Figure 3.4.7.4-1: Extension Platform – Block diagram 

EXP high-level block diagram is presented in Figure 3.4.7.4-1. It encompasses several PEs. Multiple PEs 
may be instantiated and connected through an interconnection network (INET) to scale performance as 
needed. PEs may be simple ALUs or more complex VPUs. PEs may be homogenous or heterogenous. 
External DMA modules move data to or from this shared memory. The proposed architecture provides 
composability and should facilitate design space exploration. The communication interfaces are standard 
interfaces such as CV-X-IF or AMBA family. 

One possible PE operation mode is described next: PE starts execution immediately after input data is 
available in its own input FIFO. It will continue execution for at least the number of cycles required by its 
processing logic. The result of the processing flow will be stored in the PE’s own output FIFO. This 
completes the data flow. PE is now ready for new data. If the own input FIFO is empty, PE execution will 
be suspended. Otherwise, PE will read the next input from its own input FIFO and process it. If its own 
output FIFO happens to be full, it will stall execution and will wait for clearance. An example of a dataflow 
chaining between PEs could be the computation of the complex DFT, which output will be transferred to 
the input FIFO of the PE implementing the atan2 function. Another feature considered is the usage of tags 

to identify streamed data. 

3.4.7.5 ISA 

The number and format of the instructions needed to interact with EXP will be available later. These 
instructions, however, will implement the communication of information about the location of the input (and 
output, respectively) in the shared memory. Also required is the number of vectors to be processed in a 
pipelined fashion. These vectors represent the dataset on which PEs operate. Another piece of information 
is about the composition of PEs, composition order and, possibly, the number of iterations. 

3.4.7.6 Interfaces 

CV-X-IF and one or more from AMBA family. 

3.4.7.7 Clocking Strategy 

The EXP architecture incorporates a minimum of two clock domains, utilizing clock gating techniques. PEs 
can function at varying clock frequencies and feature clocks that are gated. Due to this design decision, 
there is a requirement for clock domain crossing modules to facilitate communication between certain 
components. 
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3.4.7.8 Power Management Strategy 

The design adheres to the functionalities outlined in the clocking strategy section. These have a positive 
impact on power usage. The plan is to implement multiple power states, each offering different degrees of 
functionality within the design and associated benefits in power consumption. 

3.4.7.9 Debugging Strategy 

The debugging infrastructure needs to support inspection and modification of state in specific sections 
within PEs. The central debugging mechanisms are located within the INET module. All blocks that can be 
debugged are designed to react to control signals sent from the central debugging system. Scan chains 
could be integrated into these blocks. 
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3.5 Cryptographic and Security Accelerators  

Task 3.5, M3-M33, Task Leader: SAL 

The aim of this work package is the execution of cryptographic primitives using parametric hardware 
accelerators, with protection against side channel attacks enabled by design. These HW building blocks 
will be integrated with a RISC-V processor in an FPGA to support non-accelerated control operations. 
POLIMI is working on the integration of a hardware accelerator for the post-quantum key encapsulation 
mechanism (KEM) BIKE - the design will support key generation, encapsulation, and decapsulation 
primitives of the BIKE KEM - this design will be a part of the space demonstrator. BSC aims to integrate 
the Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM; CRYSTALS-Kyber), and the Module-
Lattice-Based Digital Signature Algorithm (ML-DSA; CRYSTALS-Dilithium) into the NOEL-V platform, 
intended for the space and automotive demonstrators. IMT is developing optimized algorithms for NTT for 
polynomial multiplications used in Post-Quantum Cryptography (PQC) algorithms. This will be developed 
into a generic accelerator for polynomial multiplication based on the NTT in a large ring ZN[X], taking 
advantage of many roots of unity with trivial multiplication and of fast Fast Fourier Transform (FFT) 
algorithms (SIMD like vectorization for lengths 2a, 2a3 and 2a5). It is intended for the automotive and space 
demonstrators. SAL is working on the Classic McEliece implementation as a separate coprocessor, with 
the polynomial multiplication accelerated by an NTT block. The possibility of other PQC accelerators is also 
being explored, with the final use case in the automotive and possibly the space demonstrators.  

Investigation of side channel and fault injection resistance of these systems will be achieved by comparing 
the HW accelerator implementations against a pure SW implementation at a later stage. 

 

IP 
Lead 

Beneficiary 
Type Domain Dependencies Licensing 

ACC-BIKE POLIMI Core PQC acceleration AMBA AXI4 Proprietary 

HLS-PQC BSC Core PQC acceleration 
Pulp Platform 
AXI 

Permissive 
open source 
(SHL-0.51) 

NTT IMT Algorithm PQC acceleration None 
Restrictive 
open source 
(GPL-3.0) 

PQC-MA SAL Core PQC acceleration CVA6, CV-X-IF Open source 

SEC BEIA Core 
Processor with 
cryptographic 
accelerators  

None 
Permissive 
open source 
(CC-BY-4.0) 

Table 3.5-1: Overview of contributions in Task 3.5 

  

https://developer.arm.com/Architectures/AMBA
https://github.com/pulp-platform/axi
https://github.com/pulp-platform/axi
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/core-v-xif
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3.5.1 Accelerator for Post-Quantum Key Encapsulation Mechanism 
BIKE (ACC-BIKE) – POLIMI 

Part of Task 3.5 Cryptographic and security accelerators. 

3.5.1.1 General Information 

This module handles the integration and documentation of a hardware accelerator for the post-quantum 
KEM BIKE, which is a candidate in the PQC standardization process by National Institute for Standards 
and Technology (NIST), USA. The NIST competition aims to design crypto schemes that can be executed 
on traditional computers and are secure against both traditional and quantum attacks. BIKE is a code-based 
KEM that makes use of quasi-cyclic moderate-density parity-check (QC-MDPC) codes [Baldi2014]. Such 
QC-MDPC codes are employed in a scheme similar to the well-studied Neiderreiter cryptosystem, which 
dates to the early 1980s [Niederreiter1986]. The public-private keypairs, plaintexts, and ciphertexts of BIKE 
are represented, due to the quasi-cyclic property of BIKE codes, as binary polynomials with a bitlength in 
the order of tens of thousands of bits (kbits). Moreover, the moderate-density nature of the underlying code 
employed by BIKE further eases decoding by leveraging a sparse representation of the polynomials, with 
a Hamming weight in the order of few hundreds. 

3.5.1.2 Purpose and Scope 

This accelerator aims to provide hardware support for the key generation, encapsulation, and decapsulation 
primitives of the BIKE KEM. It is designed to be integrated in platforms making use of an AXI interface. 

3.5.1.3 Place in the System 

The accelerators for the BIKE cryptosystem can be interfaced with the RISC-V CVA6 or NOEL-V cores 
through the AXI interface they expose. 

3.5.1.4 Block Diagram 

 

Figure 3.5.1.4-1: ACC-BIKE - Block diagram 

 



Deliverable D3.1 ISOLDE Page: 132 

   

 

D3.1 ISOLDE - public 17.05.2024 

 

The accelerator provides separate support for the three primitives, each of whom can be optionally 
instantiated in hardware. The hardware acceleration for the BIKE KEM can be integrated into computing 
platforms by making use of the AXI interface exposed by the primitives’ submodules as shown in Figure 
3.5.1.4-1. Due to its QC-MDPC code-based nature, BIKE makes use of binary polynomial and QC-MDPC 
codes arithmetic. In particular, the most computationally intensive operations are binary polynomial 
inversions (in the key generation primitive), the Black-Gray-Flip variant of QC-MDPC bit-flipping decoding 
(in decapsulation), and binary polynomial multiplication (in all three primitives). 
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3.5.2 HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC) 
– BSC 

Part of Task 3.5 Cryptographic and security accelerators. 

3.5.2.1 General Information 

Communication security is one of the most important characteristics of a system. In recent years, 
researchers have discovered significant weaknesses in current public-key cryptographic algorithms using 
quantum computing. As a result, organizations such as NIST are standardizing several quantum-resistant 
algorithms. Therefore, we have decided to integrate an accelerator based on High Level Synthesis (HLS) 
into the SELENE SoC (NOEL-V core), implementing the Key Encapsulation Mechanism ML-KEM (FIPS-
203) and the Digital Signature Scheme ML-DSA (FIPS-204). Both are based on CRYSTALS-Kyber and 
CRYSTALS-Dilithium schemes respectively. 

3.5.2.2 Purpose and Scope 

Our developments focus on optimizing the PQC standardizations. One way to improve the performance is 
to use PQC specific accelerators instead of executing PQC functions in a general-purpose processor. Our 
acceleration technique is based on high-level synthesis. By using high-level software language extensions, 
tools can interpret software code to generate HDL. This allows, in an easier way, the translation of a 
software application/algorithm to hardware description.  

NIST purposes to standardize one KEM and two Digital Signature Schemes (DSS). The KEM is the ML-
KEM. The DSS are the ML-DSA and Stateless Hash-Based Digital Signature Algorithm (SLH-DSA). For 
this project, we decided to integrate an HLS-based accelerator for the ML-KEM and the ML-DSA, as they 
share similar computation modules. 

3.5.2.3 Place in the System 

The modules are connected to the core via the NOC with the AXI4 protocol, as shown in Figure 3.5.2.3-1. 

The AXI Lite connects the core with the accelerator to select the memory directions of the data and the 
control signals. 

Each accelerator is connected using a Network on Chip (NoC), adhering to the AXI-Full protocol. For every 
data argument, there exists a dedicated AXI-Full data bus that facilitates data transmission to the memory. 
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Figure 3.5.2.3-1: HLS-PQC - Place in the system 

3.5.2.4 Block Diagram 

The algorithms are split into modules depending on their functionality in such a way that we maximize the 
parallelization so that, by pipelining the algorithm, its different parts can be performed in parallel. Each 
module contains a self-descriptive name for the task it performs, as shown in Figures 3.5.2.4-1, 3.5.2.4-2, 
and 3.5.2.4-3. 
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Figure 3.5.2.4-1: HLS-PQC - ML-DSA Sign 
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Figure 3.5.2.4-2: HLS-PQC - ML-DSA Verify 
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Figure 3.5.2.4-3: HLS-PQC - ML-KEM Encapsulation (left) and Decapsulation (right) 
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3.5.2.5 Interfaces 

In this interface communication the processor is the Master, and the accelerator is the Slave. 

ML-KEM Interface 

In the first table below (Table 3.5.2.5-1), we can see all the configuration registers They are divided into 
control (CTRL), interruption management (GIER, IER, ISR), the operation selector (kem_cfg), and the base 

memory address for each I/O data port. All these configuration registers must be set by the processor 
before starting a new operation (except for the interrupt status register ISR). In addition, we have 5 I/O data 

buses of 32-bit data width, managed by the AXI4-Full protocol. In the second table (Table 3.5.2.5-2), we 
can see these AXI interfaces, where in this case, the accelerator acts as a Master. Some buses (i.e, gmemct 

and gmemss) are used by both dataflows (Encapsulation and Decapsulation). 

 

Table 3.5.2.5-1: HLS-PQC - Configuration registers managed by s_axi_control (AXI-Lite Interface) 

 

Table 3.5.2.5-2: HLS-PQC - AXI-Full Data Interface 

ML-DSA Interface 

In the first table below (Table 3.5.2.5-3) we can see all the configuration registers, which are divided into 
control (CTRL), interruption management (GIER, IER, ISR), operation selection (kem_cfg), and the base 

memory address for each I/O data port. All these configuration registers must be set by the processor 
before starting a new operation (except for the interrupt status register ISR). In addition, we have 5 I/O data 

buses of 32-bit data width, managed by the AXI4-Full protocol. In the second table (Table 3.5.2.5-4), we 
can see these AXI interfaces, where in this case, the accelerator acts as a Master. Some buses (i.e, 
gmemout) are used by both dataflows (Signature and Verification). 
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Table 3.5.2.5-3: HLS-PQC - Configuration registers managed by s_axi_control (AXI-Lite Interface) 

 

Table 3.5.2.5-4: HLS-PQC - AXI-Full Data Interface 
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3.5.2.6 Clocking Strategy 

The accelerator contains only one clock, which is provided by the system clock. In our experiments, the 
system clock reaches a frequency of 100 MHz. However, the accelerator itself can reach up to 500 MHz. 

3.5.2.7 Reset Strategy 

The PQC accelerator integrates only one reset method, the hardware active low reset signal through the 
input port ap_rst_n. Hardware reset completely wipes all data from both ML-KEM and ML-DSA 

accelerators, resetting the module to a blank state and interrupting any on-going transaction. 

3.5.2.8 Verification Strategy 

To verify the design, we have designed two C tests for each scheme (encapsulation, decapsulation, 
signature and verify) to be executed by the core in a "baremetal" way. Thus, to see the results of these 
tests, we can simulate the SoC in a software simulator (Xcelium [33]) or in an FPGA. 

Regarding the implementation of the tests, first we obtained the inputs and outputs of the original 
Kyber/Dilithium algorithm (executing it in an x86 machine), and we incorporated them in a header file for 
our test. Thus, by including the same inputs to the accelerator, it should give the same outputs as the 
extracted ones. In summary, the methodology followed by the tests is the following:  

1. Write to the kem_cfg accelerator register to choose the functionality of the accelerator (For ML-

KEM: Encapsulation=0, Decapsulation=1. For ML-DSA: 0=Signature, 1=Verify).  
2. Load the input/output vector addresses (the ones we have as global on the header file) to the 

correspondent configuration registers of the accelerator.  
3. Raise the start flag (write 1 to CTRL configuration register) and enable interruptions (IER=1 and 

GIER=0).  

4. Wait for the accelerator results, performing a busy-wait polling. This means reading the ISR 
configuration register in a loop  until it returns 1.  

5. Read the results from global memory and compare them with the golden references extracted from 
the x86 execution.  

6. Go back to step 1 for another try, where the inputs can be changed.  

To extract performance results, the SELENE SoC contains a PMU. With some directive calls (i.e., reset, 
start, stop), we can extract the cycles taken from a part of the code. In our case, the part of interest is the 
waiting poll (step 4), which reflects the time it takes for the accelerator to perform the entire computation. 
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3.5.3 Number Theoretic Transform Algorithms for Post Quantum 
Cryptography (NTT) – IMT 

Part of Task 3.5 Cryptographic and security accelerators. 

3.5.3.1 General Information 

Post quantum cryptography and NTT 

PQC aims to replace classical public-key cryptography with new schemes that are robust against attacks 
using quantum computers. Two of the most widely used public-key cryptographic algorithms: elliptic curve 
cryptography (ECC) based on the discrete logarithm problem, and Rivest–Shamir–Adleman (RSA) based 
on the prime factorization problem, are both prone to be solved in polynomial time by Shor’s quantum 
algorithm.  

During the fourth round of its standardization process for PQC, NIST has selected several algorithms 
(based on lattice, hash and code schemes) for public-key encryption and digital signature. The analysis 
done in a recent work building a crypto-processor for RISC-V [Lee2023], has identified the multiplication of 
polynomials over finite rings Zq[X]/P(x) as a possible target for accelerating many PQC computations (other 
identified targets are hash functions, modular multiplication and modular reduction and sampling from a 
given probability distribution).  

There are many algorithms to accelerate the multiplication of two polynomials, for example Karatsuba and 
Toom-Cook multiplication [Bernstein2001]. Polynomial multiplication is equivalent to the convolution of two 
vectors (containing the polynomial coefficients), and the best asymptotical algorithm for large polynomial 
degrees is a special case of the Fast Fourier Transform – adapted to finite rings – called the Number 
Theoretic Transforms (NTT). However, not all choices of q and P(x) are compatible with the NTT. In these 
cases, the usual solution is to use Karatsuba multiplication combined with various tricks specific to each 
case to accelerate the calculations. A recent review is in [Liang2022].  

We note that all lattice based PQC algorithms selected by NIST are NTT friendly, being all built around 
choices of the finite polynomial rings that admit NTT for powers of 2 and giving a tremendous speed 
advantage compared to other algorithms from the previous rounds. However, there were concerns among 
some crypto experts that the additional algebraic structure needed to be NTT friendly increases the surface 
attack of these algorithms, even if today there is no known attack using this. 

As a cautionary tale, one third round finalist, SIKE, appears on the NIST website with the comment: “The 
SIKE teams acknowledges that SIKE and SIDH are insecure and should not be used”, due to the recent 
(2022) discovery of an efficient and practical key recovery algorithm [Castryck2022]. This shows that there 
is a risk that algorithms already chosen for standardization may prove in the future insecure. It is important 
then to have flexible implementations, especially hardware ones, which are not tied to the particularities of 
one PQC algorithm, making it easy to switch to some other algorithm as need arises. 

It seems therefore reasonable to develop an “universal” algorithm based on NTT for the product of two 
polynomials in finite rings, without restrictions on the modulus and polynomial degree and then provide a 
generic NTT accelerator, useful for all cases, including PQC algorithms with that are NTT friendly. 

 

Polynomial products in Zq[X]/P(x) via NTT 

A post-quantum cryptography module will need to provide the product of two polynomials in finite rings 
Zq[X]/P(x), one of the most time-demanding operations. Not every choice of q and P(x) permits the use of 
NTTs, a special case of the FFT to accelerate this calculation. Therefore, at first view, the utility of an NTT 
hardware accelerator seems limited. However, a similar problem in the DSP world (how to use the power-
of-two FFT for other lengths) has a simple solution – extend the original vectors by zeros up to the next 
power of two, calculate the cyclic convolution with power of 2 FFTs, reinterpret the result as the linear 
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convolution of the original vectors, and finally wrap this linear convolution to obtain the sought-after cyclic 
convolution.   

Adapting this idea to the product of two polynomials in Zq[X]/P(x), we need to calculate their product in Zq[X], 
which is equivalent to the linear convolution, and then reduce it modulo P(x), equivalent to a wrapping 
around P(x). To calculate the linear convolution, we can extend the vectors by zeros up to a length N power 
of 2 as above and calculate their cyclic convolution in Zq[X]/(XN-1). However, a new problem appears as Zq 

does not in general have roots of unity of order N like in the real/complex case (we need N to be a divisor 
of q-1 to have the required roots of unity). The solution is to work in another finite ring Zp that admits roots 
of unity of order N. To be able to recover the original residues modulo q, we need this p to be so large that 
the result in Zp[X]/(XN-1) is the same as if the cyclic convolution would have been done in Z[X]/(XN-1). Then 
we can easily do a reduction modulo q as the last step. If n is the degree of P(x), then the above condition 
on p becomes:  

p > n (q-1)2         (3.5.3.1-1)  

We now propose two choices for p, giving two “universal” algorithms that use NTT for powers of 2 to 
calculate the product of two polynomials in Zq[X] for arbitrary choices of q and degree n of the polynomials, 

with the only constraint being Equation 3.5.3.1-1.   

Algorithm 3.5.3.1-1: NTT based on a single large prime (NTT_LARGE_PRIME)  

Our choice for p is the prime number:  

p = 264- 232   +1,    p-1 = 232 x 3 x 5 x 17 x 257 x 65537  

Therefore, we have roots of unity of order powers of 2 up to 232 in Zp. With this choice, we can treat all PQC 
choices for modulus/polynomial degrees in the NIST submissions. For example, we can cover polynomial 
products for all 16-bit integers q and degrees up to 231 (q < 216, n < 231). Or we can cover all 24-bit integers 
q and degrees up to 215 (q < 224, n < 215).  

When doing arithmetic in Zp, we may use Montgomery modular multiplication with auxiliary modulus R= 264, 
which implies two supplementary multiplications with p and p’=(p-2) such that pp’= -1 mod(R). For the 
hardware implementation, these multiplications with p and p’ can be replaced each with two 
adds/subtractions and two shifts. Another option that takes advantage of p being a Solinas prime (or 
generalized Mersenne prime), replaces the two multiplications needed for the reduction modulo p with only 
one addition and two subtractions of 64-bit integers. This second option is especially suitable for hardware 
implementation. 

Another advantage is that 2 is a root of unity of order 192 = 3 x 64, so that multiplication by roots of unity of 
order 64 are actually trivial shifts. This is similar to multiplication by j and –j being trivial for real/complex 
FFT and can be used to further accelerate the NTT.  We note that also multiplication by the square root of 
2 is almost trivial, being only 2 shifts and an addition, and therefore all multiplications by roots of unity of 
order 128 are trivial (no multiplication involved).  

The only disadvantage of this choice is that we need to work internally with 64-bit integers, which is not 
always suitable for embedded applications, and we need the full 128-bit results of multiplying two 64-bit 
integers.  

Algorithm 3.5.3.1-2: NTT based on several small primes combined using the Chinese Remainder 
Theorem (NTT_CRT)   

This algorithm reduces the burden of using 64 bits integers for doing polynomial multiplication in Zq[X]/(P(X)) 
for relatively small values of the modulus q and degree n. It does the polynomial multiplication in Zpi[X] for 
several “small” primes pi and then combines the results via the Chinese Remainder Theorem (CRT) to 
obtain the product polynomial in Zp[X] where p = p1 p2 p3 ... is the product of these primes. Note that we still 
need to respect Equation 3.5.3.1-1. For example, the choice:  

p1 = 12289 = 214 – 212 + 1,   
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p2 = 40961 = 215 + 213 + 1,   

p3 = 61441 = 216 –212 + 1,   

all with auxiliary modulus R=216 and each having roots of unity for powers of 2 up to 212 permits the 
multiplication of two polynomials of degree up to 2048 in Zq[X] with q < 216 = 65536, and all operations done 
on 16-bit integers (q < 216, n < 211).  

The disadvantage of this method is that we need to calculate several polynomial products and their CRT 
combination, but this could be parallelized in a hardware implementation. 

Finally note that this method can be easily adapted to larger values of q and n by choosing larger primes p i 

and also a larger auxiliary modulus R, for example R=232, using operations on 32-bit integers. 

Acceleration of NTT  

We have seen above that we need to calculate the cyclic convolution cyc_conv(a,b) of two polynomials a,b 
in Zp[X]/(XN-1), with p a prime number and N a power of 2 that is a divisor of p-1. This cyclic convolution 
can be done via algorithms similar to the FFT, by using NTT and its inverse NTT-1: 

cyc_conv(a,b) = NTT-1(NTT(a).*NTT(b)),      (3.5.3.1-2)  

where “.*” is pointwise multiplication similar to MATLAB notation and where the complex roots of unity of 
order N are replaced with roots of unity of order N in Zp.   

The same algorithms NTT, NTT-1, and a pointwise multiplication like in Equation 3.5.3.1-2 but with different 
roots of unity can be used to calculate the Nega cyclic convolution negcyc_conv(a,b) of two polynomials 
a,b in Zp[X]/(XN+1), which is widely used in PQC algorithms that are NTT friendly. However, a subtle 
difference is that some of these algorithms use NTT even in the case where some roots of unity are still 
missing. For example, in Kyber with p = 3329 (p-1 = 28 x 13) and the ring Z3329[X]/(X256+1), there are roots 
of unity of order 256 but none of order 512, needed as (X512 – 1) = (X256 – 1) (X256 + 1).  

In this case, the NTT transform of a vector a, NTT(a), does not represent 256 numbers in Z3329 but 128 
polynomials of degree 1 and with coefficients in Z3329, and the pointwise multiplication in Equation 3.5.3.1-
2 must be replaced with a modular multiplication of these degree-one polynomials. To cover this case, our 
NTT module must be able to stop at some predefined level.  

The number of operations (additions and multiplications) for NTT is proportional to N log2N, making 
Algorithm 3.5.3.1-2 the fastest algorithm, at least asymptotically. However, for a practical implementation, 
the constant that multiplies the N log2N term, the capability to vectorize / parallelize the chosen algorithm, 
and many other factors contribute to its speed. By using the same techniques as for the FFT accelerator in 
Task 3.6 (Section 3.6.1), we hope to obtain a generic NTT accelerator able to compete with state-of-the-
art algorithms for NTT friendly choices, and useful for most PQC schemes, including those without an 
algebraic structure permitting the use of NTT. 

3.5.3.2 Purpose and Scope 

We have shown in the introduction that the power-of-two Number Theoretic Transform (NTT) may be used 
in most PQC schemes to calculate the product of two polynomials over finite rings Zq[X]/(P(X)) for arbitrary 
q and degree n of P(X). 

For the first algorithm NTT_LARGE_PRIME, we propose a radix-128 NTT that reduces drastically the 
number of multiplications by taking advantage of the fact that roots of unity of degree 128 are either powers 
of 2 or a sum of two powers of 2, such that multiplication with these roots becomes trivial (equivalent to 
shifts and additions). We also show that the algorithm can be easily vectorized for short vectors, typical for 
SIMD, with vector lengths V=2,4,8,16. 

For the second algorithm, NTT_CRT, where there are no trivial multiplications beyond 1 and –1, we propose 
a radix-8 NTTT algorithm, which also covers the case of negative wrapped (Nega cyclic) convolutions, 
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extensively used by some NTT-friendly NIST PQC schemes. Again, the algorithm is easily vectorized for 
short vectors. 

In both cases we also discuss a possible module architecture implementing the NTT and its inverse. The 
focus of our work was less hardware oriented, and more algorithm oriented. 

3.5.3.3 Place in the System 

The NTT algorithms we propose can be used in two ways. First, they can be used as software algorithms 
taking advantage of various extensions to RISC-V (vectorial extension, SIMD extension, or an extension 
for modular arithmetic). Second, they could be implemented in hardware as memory-mapped accelerators 
attached to a system bus such as AMBA AXI, while a separate cryptographic coprocessor attached to the 
CPU by a dedicated interface offloads the NTT and its inverse as needed. 

3.5.3.4 Block Diagram 

NTT_LARGE_PRIME 

 

Figure 3.5.3.4-1: NTT - Diagram for a radix 128 NNT for a large prime p = 264- 232 +1 

Figure 3.5.3.4-1 shows a recursive decimation-in-frequency NNT with scrambled output using radix-128 
steps, equivalent to 7 radix 2 steps. The radix128 block has 128 inputs and 128 outputs. Note that algorithm 
is not in place, as the input coefficients (16-bit integers) need to be immediately widened to 64-bit integers. 
Therefore, the output of the radix-128 block (after multiplication with twiddle factors) needs to be saved in 
a buffer and used as input for the next step. 

The 128 outputs need to be multiplied by 128 twiddle factors or roots of unity, and then reduced modulo p. 
Each of these 128 operations implies a full multiplication of two 64-bit integers to a 124-bit result and 
reduction back to a 64-bit result modulo p. The reduction itself does not need any supplementary 
multiplication like in Montgomery or Barrett reductions, only 1 shift, one addition and two subtractions of 
64-bit integers. If there is no hardware option for full 64-bit multiplication, one can easily mimic it using 
multiplication of 32bits integers with a full 64bits result. 

We need to use a buffer to save the full output with N values, as we cannot write back to the memory due 
to the widening to 64 bits. Then the same radix-128 block can be applied to each chunk of N/128 values, 
with a new value of N=N/128, and with new roots of unity. At the last step, depending on the value of N, 
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one needs a 64, 32, 16, 8, 4 or 2-radix step. In software, the simplest way is to program such blocks 
independently. If the radix-128 block is built in hardware, then it can be configured to use only a part of the 
128 inputs and bypass some internal levels, equivalent to a reduced radix block. Clock gating can be also 
used to reduce the power for the unused parts. 

The algorithm can be easily parallelized in SIMD manner, by working in parallel on V values, with V a power 
of 2. The only problem appears at the last levels when N is smaller than V itself. A simple solution, used 
especially for small values of V (2,4,8,16) is to stop the radix steps at N=VxV, then transpose each VxV 
chunk as a VxV matrix, and then continue down to N=1 as before. 

A different and better solution is to replace the buffer with a scratchpad memory, or PolyMem, polymorphic 
memory as proposed in [Ciobanu2018]. Then there will be no need to do the VxV transposes, as this 
memory can be configured with VxV matrices and read as rows or as columns. Note that an extension of 
this polymorphic memory will be developed in ISOLDE by IMT, and we plan to test NTT with this extension.   

A similar diagram as in Figure 3.5.3.4-1 can be used for the inverse NTT. Note that due to the scrambled 
output, we cannot reuse the same radix-128 block for the inverse NTT, and we need to implement a 
separate block that is the transpose of the direct block, reversing the flow from outputs back to inputs.  

To compare to the fastest NTT used in PQC, that used by Kyber, we need to extend the original arrays of 
length 256 by zeros to 512. Then, for each array of length 512, we need to apply a radix-128 step and then 
a radix-4 step, with only 512 multiplications. Then we need another 512 multiplications to multiply the 
transforms pointwise, and then a single inverse NTT with another 512 multiplications. At the end, we still 
need to reduce first with respect to (X256 + 1) with 256 subtractions, and then to reduce each coefficient 
modulo 3329, equivalent to other 3x256=768 simple multiplications. In total we need 2816 integer 
multiplications. The NTT used in Kyber needs 7 steps of radix 2 with 7*128 modular multiplications, a 
multiplication of 128 pairs of polynomials of degree 1 with 3*128 modular multiplications and then an inverse 
NTT again with 7*128 modular multiplications. In total we obtain 3072 modular multiplications, each being 
done with Montgomery or Barrett multiplications and needing each 3 integer multiplications. In total we 
obtain 9216 integer multiplications, 3.3 times more than our proposal. However, we need to consider that 
all integer multiplications for Kyber are done with 16bit numbers, while our multiplications are done with 
64bit numbers. Also, in practice, some software implementations of Kyber use SIMD acceleration to 
drastically reduce the total running time, whereas the use of 16bit integers may prove advantageous as 
more values can be compressed in a SIMD vector. However, a hardware implementation of NTT using the 
diagram above could prove comparable to Kyber specific implementations, with the bonus of having an 
“universal” NTT applicable to many other PQC algorithms. 

 

NTT_CRT (NTT Chinese Remainder Theorem) 
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Figure 3.5.3.4-2: NTT - Diagram for a radix 8 NNT for small prime p 

The diagram in Figure 3.5.3.4-2 shows a radix 8 NTT modulo a small prime of a special form, such that 
Montgomery or Barrett multiplication does need only a couple of shifts and integer additions or subtractions 
to achieve the reduction modulo p. Compared to the previous diagram, the prime p is rather small, so we 
can use 16bit or 32bit integers. The diagram shows how to use a vectorial or SIMD accelerator to do these 
NTT faster. Note that a transpose step is needed at level VxV where V is the length of the SIMD, similar to 
Figure 3.5.3.4-1. Also, in this case we will explore the use of PolyMem, a polymorphic memory, to cache 
intermediate results.  

A similar diagram as in Figure 3.5.3.4-2 is used for the inverse NTT, which is essentially the transpose of 
the direct one. Note that one cannot use the same algorithm for direct and inverse due to the scrambled 
output. For the convolution, one uses Equation 3.5.3.1-2 - NTT for both arrays, point-wise multiplication of 
transforms, followed by one inverse NTT. The same convolution needs to be done for several primes p i, 
and their results combined via the Chinese Remainder Theorem to obtain the convolution in Zp[X] where p 
= p1 p2 p3. Finally, one needs to reduce modulo the polynomial P(x) and then modulo the original prime q, 
using an auxiliary modulus R= 264. 

For the case of NTT-friendly algorithms, the diagram in Figure 3.5.3.4-2 can be used directly for a single 
prime, the one used in the algorithm. Acceleration can be obtained by using SIMD type vectorization with 
small values of V.  

A possible hardware implementation would follow the same diagram and ideas. 
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3.5.4 Post-Quantum Crypto Accelerator (PQC-MA) – SAL 

Part of Task 3.5 Cryptographic and security accelerators. 

3.5.4.1 General Information 

Our module is a PQC coprocessor for the Classic McEliece with polynomial multiplication accelerated by a 
Number Theoretic Transform module. The coprocessor talks to a CVA-6 RISC-V core via the CVX-IF 
interface. The rest of the systems integrate an AMBA-AXI-4 bus as the main communication channel. We 
are targeting the system to be demonstrated on a Xilinx VCU128 FPGA board. 

3.5.4.2 Purpose and Scope 

The module targets the Automotive and Space demonstrators, where they will have similar interfaces to 
their own RISC-V cores in hardware and software. 

3.5.4.3 Place in the System 

The SAL PQC module is a hardware accelerator with specialized modules that speeds up computation 

performed by some of the security modules developed by the ISOLDE project. The module uses the RISC-

V core from the CVA-6 being developed as part of WP2. The accelerator instructions are transferred from 

the core via the CV-X-IF, also under development. We will also contribute to the development of the 

necessary instructions as part of WP3, as well as to the software toolchains and compilers as part of WP4. 

The completed module is aimed mainly towards the automotive demonstrator as shown in the block 

diagram found in Figure 3.5.4.3-1, but we study its possible application in the space demonstrator. 

 

Figure 3.5.4.3-1: PQC-MA - Place in the system 

3.5.4.4 Block Diagram 

The architecture of our implementation in ISOLDE involves multiple open-HW modules along with the 
modules developed at SAL. The design incorporates a CVA6, AXI-4 Bus, SRAM blocks, and various 
peripheral/interface-bridge IPs and our own co-processor that focuses on processing PQC primitives as 
shown in Figure 3.5.4.4-1. Our core RISC-V processor is the Open-HW Group’s CVA6. It has seen 
widespread adoption for RISC-based PQC designs in recent years with its ability to extend the RISC-V 
instruction set for PQC operations via the CV-X interface. This allows the implementation of a PQC 
Instruction Set Extension (ISE) on-top of the RISC-V standard ISA, capable of speeding up the 
computations compared to any memory mapped solution. We hope to have a partial implementation of 
RISC-V’s ongoing PQC ISE.  

For our co-processor, we draw inspiration from a number of papers that proposed a method of PQC 
acceleration and existing non-PQC-based co-processors, particularly PULP’s vector co-processor, Ara. 
The PQC co-processor will contain NTT & Inverse NTT (INTT) accelerators, targeted specifically for the 
large key sizes involved in code based PQC schemes. In addition, an accelerator for non-NTT based 
polynomial multiplications may be designed and included to provide better performance for the symmetric-
key portion of lattice-based communications. One final module we may decide to include is a memory 
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management unit for the larger-keys to boost efficiency and security in key storage and retrieval, with the 
additional functionality of improving security against side channel attacks and error-detection/- correction. 

 

Figure 3.5.4.4-1: PQC-MA - Block diagram 

3.5.4.5 Interfaces 

The accelerator talks to the CVA6 core with a CV-X-IF and AXI. The rest of the modules are interfaced via 
an AXI bus, for example for the memory units. 

CV-X-IF 

This handles the transfer of instructions from the core to the coprocessor and transfers the results back to 
the core registers.   

AXI 

The overall system is built with an AMBA AXI bus, with the accelerator module also AXI-enabled. 

3.5.4.6 Sub-Modules 

The PQC module hosts an NTT accelerator submodule. 

NTT/INTT 

It allows to perform the multiplication of two discrete polynomials, which is a linear convolution in the finite 
field as a much simpler, pointwise, multiplication operation. With NTT, frequently-used, complex 
computational operations in PQC can be made quasi-linear, or “linearithmic” with time complexity of O(n 
log n) compared to polynomial with a time complexity of O(n2). 
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3.5.5 Secured RISC-V Processor with Cryptographic Accelerators 
(SEC) – BEIA 

Part of Task 3.5 Cryptographic and security accelerators. 

3.5.5.1 General Information 

An open-source distribution of a lightweight RISC-V processor is being enhanced to create a secured 
version by incorporating cryptographic accelerators, designed to speed up encryption and decryption 
operations. This secure version will be deployed in commercial applications and then contributed back to 
the open-source community. The RISC-V architecture, known for its flexibility and cost-effectiveness, is 
gaining traction as an alternative to proprietary ISAs. While it has advantages such as being free, sanction-
free, and easier to modify, it’s still relatively new and faces challenges in terms of ecosystem support and 
feature parity with established ISAs like Arm or x86. The project aims to improve security while maintaining 
an open-source approach. 

3.5.5.2 Purpose and Scope 

The primary goal is to take an existing open-source RISC-V processor and adapt it into a secure 
microcontroller suitable for commercial applications. The focus is on enhancing security features, including 
cryptographic acceleration, to ensure robust protection against threats. These accelerators enhance the 
microcontroller’s ability to handle cryptographic algorithms efficiently as presented in Figure 3.5.5.3-1. 

3.5.5.3 Place in the System 

 

Figure 3.5.5.3-1: SEC - Place in the system 

We must take into account the overall architecture, connectivity, and the function of each component while 
designing a secure RISC-V microcontroller architecture with cryptographic acceleration for a smart home 
use case (see Figure 3.5.5.3-1).   

Primary Components:  

• RISC-V Microcontroller (with cryptographic acceleration) 
 
Location: Serving as the central processing unit, at the center of the system.  
Its goal is to oversee all smart home features, such as data processing, connectivity with 
peripherals, and security management using cryptographic techniques to ensure safe data storage 
and transfer.  
 

• Cryptographic Accelerator 
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Location: Integrated inside the RISC-V microprocessor itself or attached to it as a separate module 
offloading and speeding up cryptographic processes (encryption and decryption).  

3.5.5.4 Block Diagram 

 

Figure 3.5.5.4-1: SEC - Block diagram 

CPU and memory, wireless digital circuits, peripherals, RF clock system and cryptographic acceleration 
are among the components shown in Figure 3.5.5.4-1 that coalesce together to build an embedded system 
which is robust as well as secure. 

Also, the embedded system manages memory peripheral interactions, executes encryption algorithms from 
initialization of the system and handles all user-peripheral interactions. This CPU has been designed 
following the RISC-V ISA. During its operation it fetches instructions through a combination of two types of 
memories: SRAM and ROM. The firmware that tends to be seldom changed on the other hand is usually 
stored in ROM which includes such essential software as the bootloader for the systems and minimal 
operating systems. In this case however, during start-up the CPU uses ROM to initialize itself. On the other 
hand, SRAM provides high-speed temporary storage for data or instructions that are being actively used 
by the CPU thus enabling rapid read/write operations which support dynamic processing tasks. 

Modern connected applications depend on Wi-Fi modules for wireless communication. Networking 
protocols at lower levels are dealt with by this Wi-Fi module that does signal modulation/demodulation 
besides securing data while it traverses through network channels in form of encrypted/decrypted format. 
The CPU interfaces with the Wi-Fi module to send and receive data packets, allowing the system to 
communicate with other devices and networks wirelessly. 
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Peripherals extend the system's capabilities, allowing it to interface with a wide range of external devices 
and sensors. Various input and output activities can be connected to GPIO pins. These pins can either be 
programmed by the CPU to receive signals from external sources like sensors or transmit signals for 
controlling other hardware. The Analog-to-Digital Converter (ADC) enables the conversion of analog signals 
into digital data which is then manipulated by the CPU. This feature is essential in interfacing with analog 
sensors that detect physical quantities such as temperature or light. Furthermore, there is a system timer 
that provides accurate timing functions which help in scheduling tasks, generating time delays and 
timestamping events by CPU. USB Serial allows serial communication with external devices. 

The microcontroller's CPU is in charge of carrying out the operating system and application code. It 
coordinates the actions of every other part of the system.  

Cryptographic Accelerator: A specialized hardware component made to effectively carry out encryption and 
decryption operations, greatly boosting the system's overall security and performance of cryptographic 
duties. The details of the cryptographic accelerator are still under development and will be added in future 
deliverables. Accelerating other primitives like the Data Encryption Standard (DES) and 3DES in addition 
to AES is under evaluation.  

Communication Interfaces: These consist of a secure Wi-Fi interface, which allow the microcontroller to 
connect to different networks and gadgets in the ecosystem of smart homes. The cryptographic accelerator 
makes secure communication easier.  

3.5.5.5 Clocking Strategy 

Clock signals act as the beating heart that synchronizes the activity of several components in a 
microcontroller architecture. For the integration of a secure RISC-V microcontroller module, especially one 
with cryptographic capabilities for smart home applications, the following kinds of clock signals are taken 
into account:  

1. Main System Clock:  

a) Source: May come from an external source or is often produced by an on-chip oscillator.  

b) Purpose: The timing for instruction fetch, decode, execute, and write-back cycles is provided 
by it, which powers the CPU core.  

c) Frequency: Depending on the power limitations and performance requirements, it usually 
spans a few MHz to GHz.  

2. Peripheral Clocks:  

a) Source: Obtained from either independent oscillators or the main system clock.  

b) Purpose: Numerous peripheral interfaces, including SPI, I2C, UART, and others, use these 
clocks. They can frequently be lowered from the primary clock in order to conserve energy or 
satisfy the peripheral's timing needs.  

c) Frequency: Typically, lower than the system clock to accommodate the particular peripheral's 
requirements.  

3. Cryptographic Accelerator Clock:  

a) Source: It may be the cryptography unit's own dedicated clock or the same as the main system 
clock.  

b) Purpose: The efficient and timely execution of cryptographic operations is guaranteed by this 
clock. The cryptographic accelerator can function independently of the CPU core when it has 
its own clock, which is advantageous for carrying out cryptographic operations in the 
background.  
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c) Frequency: When processing cryptographic methods quickly is important, it must be set high 
enough. However, it can also be set to power-saving modes.  

3.5.5.6 Reset Strategy 

The reset signal in a microcontroller system is essential for guaranteeing that the system boots up in a 
known condition. The following describes the common reset signals used in RISC-V microcontroller 
modules, along with the module's actions during a reset:  

1. Power-On Reset (POR):  

a) Activated upon microcontroller power-up.  

b) Guarantees that, prior to the CPU beginning execution, all registers and states are initialized 
to their default settings.  

2. External Reset:  

a) A specific pin on the microcontroller that is often activated by an outside source.  

b) Used by external watchdogs or for manual resets.  

3. Software Reset:  

a) Caused by the microcontroller's software, frequently by writing to a particular register.  

b) Can be used to force a software restart of the system in the event of an unrecoverable error.  

Behavior During Reset  

1. Core CPU:  

a) The CPU halts the execution of commands.  

b) The reset vector address, which is usually the beginning of the bootloader or original firmware, 
is where the program counter is set.  

c) The initial state of the CPU registers is set.  

2. Memory:  

a) RAM and registers that are volatile are wiped or reset to their initial settings.  

b) Non-volatile memory, such as Flash, does not alter.  

3. Communication Interfaces:  

a) Any active transactions are stopped when serial ports, network interfaces, and other 
communication modules are reset.  

4. Cryptographic Accelerator:  

a) Cryptographic activities that are in progress are terminated.  

b) To stop leaks, sensitive data in registers and cryptographic keys should be purged.  

5. Clock System:  

a) The clock system is reset, which can entail turning off internal oscillators or putting clock 
multipliers and divisions back in their initial settings.  

The RISC-V microcontroller's particular implementation and configuration will determine the precise 
behavior. Additional precautions are taken in secure applications to guarantee that resets do not jeopardize 
the device's security status and that sensitive data, including keys, are sufficiently safeguarded even during 
reset procedures.  
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3.6 Signal Processing, Neuromorphic and Application-
Specific Instruction Set Processors (ASIPs)  

Task 3.6, M3-M33, Task Leader: CODA 

Task 3.6 of the ISOLDE project focusses on three main areas of interest. The first area is an application 
specific instruction set processor focused on motor control partially developed by cooperation of NXP-CZ, 
CODA and BUT. NXP-CZ uses their highly valued SW expertise to provide the source code of the real 
application snippets which are profiled by the CODA tools and the results of the profiling are used to drive 
the tailoring process of the baseline RISC-V CPU. BUT performs Power, Performance, and Area (PPA) 
analysis of the developed IP and uses the result of the analysis to provide feedback during the 
implementation phase. 

The second area of interest is the signal processing domain. IMT and ACP are implementing domain 
specific accelerators of the FFT/iFFT algorithms. 

The third area of interest is neuromorphic computing. POLITO is working on the integration of their 
neuromorphic accelerator into the RISC-V framework. 

 

IP 
Lead 

Beneficiary 
Type Domain Dependencies Licensing 

FFT IMT Algorithm 
Signal 
processing 

None 
Restrictive 
open source 
(GPL-3.0) 

LDPC ACP Core 
Signal 
processing 

Previous parts of 
receive chain 
(synchronization, 
FFT, 
equalization, LLR 
extraction) 

Proprietary 

Motor Control 
Accelerator 

CODA Core Motor Control 
CODA 
background IP 

Proprietary 

Neuromorphic 
HW 
Accelerator 

PoliTo Core 
Neuromorphic 
computing 
acceleration 

CVA6, AXI 
Permissive 
open source 
(SHL, MIT) 

SCA ACP Core 
Signal 
processing 

RF transceiver Proprietary 

Table 3.6-1: Overview of contributions in Task 3.6 

  

https://github.com/openhwgroup/cva6
https://developer.arm.com/Architectures/AMBA
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3.6.1 Fast Fourier Transform Algorithms for SIMD and Vector 
Accelerators (FFT) – IMT 

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors. 

3.6.1.1 General Information 

The FFT is widely used in signal processing and numerical simulations. For example, it can be used to 
accelerate the convolution of two arrays with application to finite impulse response (FIR) filtering. 

There are many algorithms for FFT, most of them variants of the Cooley-Tuckey algorithm. The total number 
of arithmetic operations (additions/subtractions and multiplications) for these algorithms is close to 5 N 
log2(N), where N is the length of the array (and a power of 2). For modern CPUs, there is almost no 
difference in latency and throughput for additions /subtractions and multiplications. However, for hardware 
implementation, a multiplier, especially for floating point, is rather complex and large.   

The split-radix FFT reduces the total number of operations to 4 N log2(N), and this was for a long time the 
best possible result. A recent improvement has given a slight reduction in the number of arithmetic 
operations with the constant 4 reduced to 34/9=3.78. However, this new algorithm has proven difficult to 
implement and numerically unstable. 

To accelerate the FFT one can use either parallel or vectorial acceleration. For the many variants of the 
Cooley-Tuckey algorithm, one can find some which are better for one type of acceleration, and in many 
cases, they each have a transpose form which is good for the other type of acceleration. However, for the 
split-radix FFT, there are much less variants, and it is not clear which one is best suited for parallel or 
vectorial acceleration. 

3.6.1.2 Purpose and Scope 

We propose a split-radix FFT algorithm for arrays of floating-point values with lengths a power of 2, adapted 
for SIMD-type vectorization. The algorithm is rather flexible and can be easily adapted to various SIMD 
accelerators or to a hardware implementation. The biggest limitation is related to the number of values V in 
a SIMD vector, and the algorithm is practically limited to relatively small values of V (2,4,8,16).   

The proposed split-radix FFT algorithm is recursive, decimation-in-frequency, in-place, with scrambled 
output and precomputed roots of unity. It uses optimally an existing cache (or buffer) without any knowledge 
of its size, due to the recursive nature (it works recursively on smaller and smaller parts of the original array, 
until the part fits in the cache). For real arrays it is still in place and twice as fast as the complex version. A 
scalar implementation was proposed by D.J. Bernstein [Bernstein1999]; our proposal is practically the 
SIMD vectorization of this scalar version.  

For the case of large values of V, like in the RISC-V vectorial extension, the optimal FFT algorithms are 
more akin to those invented in the last century for various vector processors. We also explore a split-radix 
version suited for this case. 

We have also developed an FFT algorithm that can be used for fixed point arrays, to calculate the 
convolution of two real-valued arrays with fixed-point values. Compared to the usual FFT fixed point 
implementations that mimic the floating-point algorithms and loose around log2(N)/2 bits of precision, where 
N is the length of the arrays, we calculate the convolution without any loss of precision, like a fused 
operation (with the entire convolution fused). We start by interpreting the fixed-point values as integers, and 
then do the convolution as the multiplication of two polynomials with integer coefficients. At the end we 
obtain the desired convolution with integer values (but with a larger width), and the user can reinterpret 
them as fixed-point values as needed. For example, for two arrays of length 32768 = 215 with 24-bits fixed-
point values, we obtain the exact convolution as integers with 15+24+24=63 bits (actually 64bit integers). 
The user can then reduce each coefficient to the desired fixed-point width (24 or larger). The multiplication 
of two polynomials is done using Number Theoretic Transforms (NTT), as we proposed in Task 3.5 for 
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cryptographic applications (Section 3.5.3). Note that if implemented in hardware, such NTT accelerator 
could be used both for cryptography and for signal processing. 

3.6.1.3 Place in the System 

The FFT algorithms we propose can be used in two ways. First, they can be used as software algorithms 
taking advantage of various extensions to RISC-V (vectorial extension, SIMD extension). Second, they 
cand be implemented in hardware as a memory-mapped accelerator attached to a system bus such as 
AMBA AXI, with the CPU or a Digital Signal Processor attached to the CPU by a dedicated interface offloads 
the FFT and its inverse as needed. 

3.6.1.4 Block Diagram 

SIMD (small vector) FFT split radix algorithm and implementation 

 

Figure 3.6.1.4-1: FFT - Decimation in frequency split radix step interpreted as polynomials transforms. The 4n step is 
reduced to one 2n step and two n steps. Note the twisting of the polynomial coefficients using roots of unity and their 
inverse (conjugates). 

Figure 3.6.1.4-1 shows the decimation in frequency split radix 2/4 algorithm, presented as a series of 
polynomial transformations that calculate from a given residue modulo X4n-1, the residues modulo of smaller 
degree polynomials [Bernstein2007]. Note that after such a step, one can apply recursively the same step 
to smaller degrees polynomials. 
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Figure 3.6.1.4-2: FFT - In-place implementation for complex input 

Figure 3.6.1.4-2 shows an in-place implementation for complex input. Note that SIMD-like parallelism is 
easy to implement if each complex input contains V contiguous values. However, this easy parallelism 
stops once the degree of the polynomial is less than V. A solution for this challenge is presented later. 

 

 

Figure 3.6.1.4-3: FFT - Possible hardware implementation 

The diagram in Figure 3.6.1.4-3 shows the split radix algorithm, adapted for a hardware implementation. 
The 2/4 split radix block operates on 4 complex numbers, or 8 real numbers and outputs also 4 complex/8 
real numbers. Being in-place, the output is written back to the same memory locations as the input. 
Therefore, we need 8 registers for input and output. The two supplementary input registers are needed for 
one complex root of unity which is precomputed. Compared to the classical split-radix algorithm, which 
needs two roots of unity, the second being the cube power of the first, we use the trick proposed by 
Bernstein [Bernstein1999] that replaces the cube with the conjugate of the root. Note that this will alter the 
output order, but this does not affect a convolution. 
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Inside the 2/4 split radix block we have some classical +/- butterflies (without multiplication) and a new type 
of butterfly called a twister (its operation is shown in the diagram). The V represents the number of values 
on which we operate in parallel (for example the number of values in a SIMD array). To accelerate the 
computations, we apply all butterfly operations on V values in parallel. For a hardware implementation, one 
could choose to increase the number of twisters working in parallel or use less twisters with a pipeline 
approach. 

The same approach can be used for the same value of V if there are more registers available. For example, 
a 4/8 split radix block uses 8 complex values as input and two complex roots, needing 16+4 input registers 
and 16 output registers. Again, each operation applies on V values in parallel and may be interpreted as 
an “horizontal parallelism”. 

The algorithm must stop when we reach a level of V, as now the horizontal parallelism should be done 
inside a V-long vector. A simple solution is to stop the split radix steps much earlier, at the V2 level, and 
transform the horizontal parallelism to a “vertical” one by transposing each V2 contiguous chunk as a matrix. 
Then one can continue to the lower levels by applying the same split-radix pass to V different vectors, each 
with length V.  

Finally, let us note that we need a separate implementation for the inverse FFT transform, as we cannot 
reuse the direct FFT due to the scrambled output. The inverse pass is the transpose of the direct one, going 
back from the output to the input of the direct pass. 

Finally, for a real array, one can simply discard the second complex number generated by a twister, as it is 
exactly the complex conjugate of the first complex number. For a hardware implementation one could use 
the same split-radix block with an inactivated path to reduce the consumed power.  

Compared to [Bernstein1999] where a real array needs an initial permutation (2 x N/2 -> N/2 x 2), we 
propose a new algorithm for real arrays that requires no permutation, with some penalization in memory 
access (doubling the number of channels) which can be absorbed by caching or other means. 

Vector FFT split radix algorithm 

 

Figure 3.6.1.4-4: FFT - Diagram showing a possible hardware implementation for large values of V. 

For large values of V (SIMD vector length), we need a completely different approach for vectorizing the 
FFT, as stopping at the V2 level is not practical (as V2 could be much larger than the length of the array).  

There are several approaches possible. In [Kwong2012], Kwong and Goel propose a constant geometry 
architecture for the split radix FFT, by interpreting it as a radix-2 FFT where some twiddle coefficients are 



Deliverable D3.1 ISOLDE Page: 158 

   

 

D3.1 ISOLDE - public 17.05.2024 

 

trivial. Then they apply the usual Pease algorithm (parallelizing the radix-2 FFT) to obtain the sought after 
constant geometry architecture. Then they propose a hardware implementation copying the Pease radix-2 
FFT, with no gain in throughput or latency. However, they propose to use clock-gating to save power when 
the twiddle factors are trivial. Note that this approach was patented by Texas Instruments in 2011, 
[Kwong2013]. 

The dual algorithm for the Pease algorithm is called Korn-Lambiotte and is a constant geometry radix-2 
algorithm suitable for vector processors (see [Franchetti2011]). It was recently used in [Vizcaino2023] for 
long vector architectures, including the vectorial extension for RISC-V.  

Our proposal is to adapt the Korn-Lambiotte algorithm from the radix-2 algorithm to the split-radix one. First, 
the SIMD-type split radix recursive algorithm introduced before can still be used down to a level 4V (using 
also some radix 2 steps as the last ones). However, at that level the entire array enters in a couple of 
registers of length V. From this level down to level 1, we do not need to write back intermediate results to 
memory, but all calculations can be done inside the registers. The diagram in Figure 3.6.1.4-4 shows four 
vectors of length V – each holding half of the V values, either real or imaginary parts. At every step, we 
apply a split radix 2/4 to the vectors, together with some in-vector permutations and the results are saved 
in new vectors. All roots of unity enter in a single vector (real and imaginary parts, as only 2V/4 roots are 
needed for the first 2V step). At each step we also recalculate a new vector of roots of unity, by deleting 
some roots, duplicating others and applying some permutations. Another solution is to use at every step a 
different precomputed vector with correct roots of unity, read from memory. 

Compared to a vector radix 2 algorithm, the split-radix 4 needs the same number of steps, log2(2V). 
Contrary to [Kwong2012], where the same steps from radix 2 were used for split-radix 2/4 with a gain in 
power for trivial twiddles, in our approach the steps for the split-radix 2/4 are exactly the same as for the 
scalar case.  However, note that after log4(2V) steps, some of the values in each vector are already the 
final ones and should not be changed in further steps. One idea is to push these values to the end of the 
vector at each step and mask them so that subsequent steps do not affect them. The efficiency of this 
approach will largely depend on the implementation of masked vector operations and will give some gains 
compared to vectorial radix 2 algorithms only if these masked operations have lower latencies or higher 
throughput. A better solution is to use a polymorphic memory, as proposed in [Ciobanu2018]. In this case, 
we can reduce the length of the vectors at each step as needed, retaining only the values that still need to 
be acted on, thus decreasing the latency, and at the same time start moving the finished values back to 
memory. Note that such a polymorphic memory will be developed in this project by IMT (Section 3.2.3), and 
we intend to check it for vectorized FFTs with large values of V. 

Fixed point convolution using number theoretic transforms (NTT) 

This algorithm has been presented in Section 3.5.3 as the NTT for post quantum cryptography. There are 
two variants, a large prime one using 64bit integers and another one based on residue arithmetic using 
16bit integers. Both give the same end result. 

The idea of using number theoretic transforms for convolution of real vectors is not new. One advantage is 
that the algorithm is intrinsically adapted to real values, without the need of steps for complex arrays and 
with real roots of unity. Other advantages are described below for the case of fixed-point values. 

We start by interpreting the fixed-point values as unsigned integers. Then we can do the convolution defined 
as the multiplication of two polynomials with integer coefficients via NTT, as described in detail in Section 
3.5.3. The end result is the desired convolution with integer coefficients with larger width, without any loss 
in precision (perfectly exact solution).  For example, for two arrays of length 32768 = 215 with values fixed-
point with 24 bits, we obtain the exact convolution as integers with 15+24+24=63 bits (actually 64-bit 
integers). The user can then reduce each coefficient to the desired fixed-point width.  

Note that if implemented in hardware, such an NTT accelerator could be used both for cryptography and 
for signal processing. 
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3.6.2 Low Density Parity Check Decoder (LDPC) – ACP 

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors. 

3.6.2.1 General Information 

Low density parity check (LDPC) codes are linear block channel codes defined by a sparse parity check 
matrix. Due to the superior error correcting performance and high degree of parallelization, they have been 
adopted and used in many wired and wireless standards. 

Among the different type of LDPC codes, quasi-cyclic (QC) LDPC codes are very popular as they enable 
an efficient hardware implementation for both the encoder and the decoder. The 5G New Radio (NR) LDPC 
code is a (systematic and irregular) QC-LDPC, designed for a peak throughput 20 Gbps and has two base 
graphs, BG1 and BG2, that can be expanded to support various code rate and block length by changing 
the lifting factor. 

3.6.2.2 Purpose and Scope 

Different hardware architectures for LDPC decoders have been proposed to meet the power and throughput 
requirements of various standards. Among those, various degrees of resource sharing yield flexible 
decoders with varying area requirements. For this project's purpose, we opted for row-parallel architecture 
as it strikes the balance between area and the decoder throughput. In this architecture, multiple rows of the 
parity check matrix are processed in parallel, enhancing throughput. The degree of parallelization offers 
flexibility to trade throughput for area, as the required decoder throughput may vary depending on preceding 
signal processing blocks. Additionally, this architecture must support both base graphs and various 
combinations of lifting factors and block lengths. 

3.6.2.3 Place in the System 

The LDPC decoder is placed in the baseband domain of the IoT demonstrator together with other baseband 
accelerators and memories as shown in Figure 3.6.2.3-1. The processor domain that executes the protocol 
stack is in control of the baseband domain and configures, starts, and stops the different accelerators at 
the right time. 

The LDPC decoder is controlled via the baseband controller block, where a corresponding command is 
sent to the decoder indicating a decoding task. The decoder starts the decoding by fetching the code blocks 
LLRs (logarithmic likelihood ratios, a common term used in communications) stored in the LLR buffers and 
writes the results into Tightly-Coupled Data Memory (TCDM). 

 

 

Figure 3.6.2.3-1: LDPC - System integration 
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3.6.2.4 Block Diagram 

The LDPC decoder is designed to decode the NR QC-LDPC code and supports both base graphs which 
enable it to handle a large range of transport block sizes (TBS) and code rates. It is designed with a row-
parallel architecture and supports the different lifting sizes as required by the standard. 

The LDPC decoder is designed with a row-parallel architecture with a penalization factor of p, as illustrated 
in Figure 3.6.2.4-1. It consists of p internal LLR memories and p decoder functional units (DFU). The internal 
LLR memory provides Q-massages to the DFUs via the distribution network, where in the DFUs check 
node, variable node, LLR operations are performed. Each DFU has a local memory to store the resulting 
R-massages, which are feedback to the LLR memories via the gathering network. 

At start, the LLRs are loaded into internal LLR memories and each hardware iteration processes p rows of 
the parity-check matrix. For example, for p=32 and Z=384, each Z rows (1 row of the base graph) is 
processed via 12 iterations. At the end, the decoded LLRs (or their sign bit) are loaded from the internal 
LLR memories into TCDM. 

 

Figure 3.6.2.4-1: Internal Organization of the LDPC decoder with p parallel functional decoding units 

3.6.2.5 Interfaces 

The LDPC decoder has three interfaces and one interrupt line to indicate completion of a block decoding. 
The interrupt is connected to the processor's main interrupt controller and can be used to start subsequent 
processing. 

Direct Memory Interface 

The LDPC decoder has access to the accelerator TCDM through a dedicated interface. The decoder can 
read and write data to the TCDM. Processors, or other accelerators can then further process the results by 
accessing the TCDM. 

LLR Buffer Interface 

The LDPC decoder has access to the LLR buffer through a dedicated interface. The decoder can load input 
LLRs accumulated with Hybrid Automatic Repeat Request (HARQ) into its internal memory for each 
decoding iteration. The buffer is shared with a Turbo decoder that is used for a different protocol standard, 
but two decoders will not run concurrently. 

APB Configuration Interface 
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The APB interface is used to configure, start, and stop the accelerator and is connected to the main bus of 
the baseband processor. 

3.6.2.6 Clocking Strategy 

The LDPC decoder is part of the digital baseband and clocked by the digital baseband clock. 

3.6.2.7 Reset Strategy 

The LDPC decoder is part of the digital baseband and can be reset asynchronously together with the rest 
of the digital baseband after power up. 

3.6.2.8 Power Management Strategy 

The LDPC decoder can be powered down with the rest of the digital baseband while leaving the processor 
domain on. This is typically the case when the chip is not connected to the base station or during DRX, or 
PSM cycles. 

3.6.2.9 Debugging Strategy 

The LDPC decoder’s Finite State Machine (FSM) cannot be interrupted by the debugger, but the number 
of iterations can be adjusted such that decoding results can be investigated after each iteration. In addition, 
the internal state of the decoder can be observed through the APB interface. 
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3.6.3 Motor Control Accelerator – CODA 

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors. 

3.6.3.1 General Information 

The IP proposed by CODA targets the automotive domain. NXP-CZ provides the Model Predictive Control 
algorithm that needs to be profiled. Based on the preliminary analysis of the algorithm, a 9-stage application 
class processor was selected to be the main core of the CODA accelerator. Further profiling and 
performance analysis will be used to identify the extension(s)/customization(s) for the processor to improve 
its performance to meet the control algorithm needs. 

3.6.3.2 Purpose and Scope 

The purpose of the IP developed by CODA is to demonstrate the usability of RISC-V CPU cores for 
computationally intensive applications in the automotive domain. CODA uses the Codasip Studio tool to 
tailor an existing RISC-V processor to effectively support the selected control application. The used RISC-
V processor contains partial support of the Vector extension. The IP by CODA implemented as part of the 
ISOLDE project, further reported as foreground IP, will further enhance the existing implementation of 
Vector extension to be fully compliant or compatible with the RISC-V Vector extension (RVV) 
specification [RVI2021] and further tailor the processor by adding additional functionality and instructions 
necessary for the control application. 

3.6.3.3 Place in the System 

One of the most complex parts of model predictive control is the quadratic solver used to find the optimal 
solution for the motor control problem. The quadratic programming solver provided by the NXP-CZ will be 
the central part of the system. Codasip’s 9-stage application processor will run the solver as well as any 
other software task. The processor contains a customizable application RISC-V core. Based on the profiling 
result, the new instruction(s) will be introduced into the ISA by CODA and their micro-architecture 
implemented accordingly. The foreground IPs developed by CODA as part of the ISOLDE project will be 

tightly connected with the background IPs, such as the existing baseline A73014 CPU and/or VPU. The 
foreground IP may be considered another customization of the A730 CPU. The tight interconnection 
between foreground and background IPs provides important performance benefits and simplifies the 
design. 

The use of the developed foreground IP with a different processor is not recommended since the foreground 
IP is being developed as the customization of the baseline CODA processor and therefore makes a 
significant amount of assumption about the processor. The baseline CPU can be connected to a host 
processor by a standard interface (such as AXI), or it can be used to run any standard RISC-V workload in 
addition to the accelerator task and remove the need of the host CPU from the system. In such a case, the 
AXI interface would be used to connect the CPU to the required peripherals. 

 

 

14 https://codasip.com/products/application-risc-v-processors/a730/  
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Figure 3.6.3.3-1: Motor Control Accelerator - Position in the system 

Figure 3.6.3.3-1 demonstrates the position of the IP developed by CODA in a generic exemplary system-
on-chip in a stand-alone configuration. The foreground IP is depicted by a shaded box in green color and 
is placed inside the background IP depicted by the gray to symbolize that the foreground IP is connected 
only to the background IP. The CODA A730 is just one part of the system connected by the AXI4 interface. 
The A730 may be used to control all remaining subsystems, or it can be controlled by another CPU 
depending on the system architecture. 

3.6.3.4 Block Diagram  

The block diagram in Figure 3.6.3.4-1 describes Codasip's approach to the design of the accelerator. The 
boxes shaded in gray depict components considered the background IP that will be provided by the CODA 
to evaluate foreground IP but will not be developed as part of the ISOLDE project. The green shaded 
components describe the foreground IPs that may be developed as part of the CODA contribution. If the 
customization for the specific step is implemented depends on the profiling results. The dark green 
represents the decoding of the new instructions and the execution of these instructions. 
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Figure 3.6.3.4-1: Motor Control Accelerator - CODA CPU tailored motor control domain 

3.6.3.5 ISA 

The CODA processor IP blocks are written in the Codal3 language, a high-level language used to 
automatically generate both the Software Development Kit (SDK) and Hardware Development Kit (HDK). 
The SDK contains the C compiler with assembler and instruction accurate simulator while HDK contains 
the RTL representation of the customized processor.  

As can be seen in the block diagram in previous section, the CODA customization only adds new 
functionality and never removes already existing functionality. Therefore, CODA can guarantee that any 
functionality existing in the background IPs will remain unchanged and therefore standard RISC-V code is 
binary compatible. However, if the standard binary code is run on the customized processor, the new 
instructions will not be used and therefore the customization performance benefits will be lost.  

The best way to approach this problem is to compile the application from the C code. The customized 
compiler automatically generated by CODA tools will be able to use new instructions to achieve the best 
performance. 

The exact functionality of the custom instruction will be known based on the result of the profiling done by 
CODA, which will be repeated during the whole implementation phase. Any introduced custom instruction 
will be compliant with RISC-V specification.  

3.6.3.6 Interfaces 

The HW interfaces between the newly developed IPs and already existing IPs are automatically generated 
during the HLS synthesis from the Codal3 language.  

The A730 CPU core is connected by the AXI4 interface. 

3.6.3.7 Clocking Strategy 

The newly implemented IP will be connected to the processor core by the automatically generated interface. 
It is recommended to use existing IPs provided by CODA to integrate into the system. Therefore, this section 
will describe the clocking strategy of the A730 processor core instead of the newly developed IP itself.  
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The A730 contains three main clock domains which are all driven by the single clock pin CLK. Each of the 

clock domains has its own CLK_EN pin. The following table contains the list of the enable signals together 

with a brief description. 

Signal Name  Description  

MEMSYS_CLKEN  Controls the memory management clock 
domain. Memory management system is shared 
between multiple processor cores in case of 
multicore configuration.  

DBG_CLKEN  Controls the debug clock domain. Debug 
subsystem is shared between all cores in the 
multicore configuration.  

CORE_CLKEN[n]  Controls the clock domain for the processor 
core. Each core has its own clock enable signal 
in case of multicore configuration.  

Table 3.6.3.7-1: Motor Control Accelerator - List of the enable signals together with a brief description. 

The foreground IP will be tightly connected with the processor pipeline and as such will operate on the core 
clock of the given core. In the case of the multicore configuration, each core will instantiate its own 
foreground IPs. 

3.6.3.8 Reset Strategy 

The resets of the CODA foreground IPs will be tightly coupled with the reset of the processor pipeline. Since 
the A730 core is the recommended IP, this section describes the reset process of the A730. 

Signal Name  Polarity  Description  

MEMSYS_RST  Active low  Reset for memory subsystem.  

DBG_RST  Active low  Reset for debug subsystem  

CORE_RST  Active low  Reset signal for the core. Each core in the multicore system has its 
own reset.  

Table 3.6.3.8-1: Motor Control Accelerator - Reset of the A730 

The foreground IP implemented as part of the ISOLDE project will be using CORE_RST since it is connected 

to the CPU core. 

3.6.3.9 Debugging Strategy 

All background CODA IP implement debug strategies described in the RISC-V specification. The 
foreground IP will continue in this trend and all additional functionalities will be accessible from the debug 
manager implemented according to the RISC-V External Debug Support [Donahue2024]. 
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3.6.4 Neuromorphic HW Accelerator – POLITO 

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors. 

3.6.4.1 General Information 

Neuromorphic computing is a research field where Spiking Neural Networks (SNN), also called third 
generation neural networks, are explored to overcome the limitations of traditional Von Neumann 
architectures. SNNs represent a subset of AI applications that take inspiration from the human brain by 
emulating biological neurons and synapses for data processing and transfer, enabling event-driven, fault-
tolerant computation with low latency and high parallelism, thanks to the proximity of memory and 
processing units. 

3.6.4.2 Purpose and Scope 

Following the growing interest in SNNs, we want to demonstrate how neuromorphic systems can perform 
well in computation from the point of view of power efficiency, latency and parallelism. The flexibility given 
by the RISC-V ISA and FPGAs allows the creation of digital/neuromorphic prototyping platform where edge 
and low latency computation from the neuromorphic accelerators is complemented by the control of a digital 
processor. 

3.6.4.3 Place in the System 

 

Figure 3.6.4.3-1: Neuromorphic HW Accelerator - Place in the system 

In Figure 3.6.4.3-1 we report the high-level architecture of our HW. The high-speed AXI protocol will allow 
fast reconfiguration of the accelerator and delivery of input data encoded in spikes. Internal BRAM 
memories available on the FPGA are used by the packet encoder to store sample batches and by the 
neuromorphic HW to store networks weights and neuron statuses. However, this memory type offers limited 
capacity. Hence, for larger datasets an external, larger, memory will be used to store all the data that will 
be progressively offloaded to the accelerator. 
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3.6.4.4 Block Diagram 

 

Figure 3.6.4.4-1: Neuromorphic HW Accelerator - Block diagram 

The behavior of the neuromorphic accelerator can be controlled via a dedicated set of parameters that are 
stored internally in a dedicated register file (CONF REGISTERS in picture 3.6.4.4-1) operated by a 
CONTROLLER, which oversees delivering the network configuration to the SNN. Moreover, internal RAM 
elements are used to store weights and neuron statuses: They are accessible from the outside through a 
SPI-controlled device for writing or reading. 

The possibility to instantiate the accelerator as a multicore architecture is to be investigated. In that case, 
a Scheduler (SCH) unit shall be introduced that handles spikes between cores.  

The accelerator’s operations are managed by a main FSM inside the SNN logic unit. It receives input spikes, 
computes the evolution of the network by implementing the behavioral neuron logic (mostly Leaky-
Integrate-and-Fire - LIF) and (optionally) implements online learning through the configurable WEIGHT 
UPDATE unit.  

The SNN OUTPUT LOGIC unit elaborates the output of the network and provides the inference results. 

3.6.4.5 Interfaces 

AXI 

The AXI bus can be used to communicate the input data to the accelerator or the network configuration 
when it’s necessary to implement a new design for a different use-case. 

SPI 

The SPI bus is used to access the memory elements internal to the accelerator, probably through an AXI-
to-SPI bridge to allow the utilization of one unique transfer protocol from the main Host. 

3.6.4.6 Clocking Strategy 

Main clock signal of the system, autonomous time ticks’ generation for event-based computing. 
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3.6.5 Shared Correlation Accelerator (SCA) – ACP 

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors. 

3.6.5.1 General Information 

In cellular wireless communication, it is necessary to align the timing and frequency references of the user 
equipment (UE) and base station (BS). This is necessary both during initial synchronization, when the 
connection is first set up, and after the UE exits low-power sleep modes. If the UE uses a low-cost crystal 
oscillator or the cell is operating in a high-frequency band, the initial frequency error can be substantial. To 
correct for this, the BS regularly transmits one of several known synchronization sequences. The UE then 
looks for these sequences using either low-complexity auto-correlation or cross-correlation approaches 
[Hazy1997]. The cross-correlation method is preferred for its superior performance but comes at a heavy 
computational cost. 

The cross-correlation approach involves computing the cross-correlation of the received signal with the 
possible synchronization sequences over all time offsets [Kroll2017, Lippuner2020]. Additionally, this 
process needs to be repeated for a grid covering the range of the possible frequency offsets. Accordingly, 
the computational effort scales linearly with the maximum possible frequency error, which in turn scales 
with the maximum carrier frequency. We estimate the required correlation throughput at 81 Mcorr/s (million 
correlations per second) for LTE. For 5G NR Frequency Range 1 (FR1), the required throughput rises to 
230 Mcorr/s due to the higher bandwidth and carrier frequency. 

3.6.5.2 Purpose and Scope 

The purpose of the Shared Correlation Accelerator (SCA) is computing the cross-correlations for the 
synchronization for a modem that supports both LTE and NR FR1. The SCA shall compute these 
correlations in real time, as storing the received samples for a longer duration is not feasible. If the cross-
correlations are naively computed in time-domain, this would correspond to 470 Gop/s. A better approach 
is computing the cross-correlations in the frequency domain using the Overlap-Save method [Kroll2017, 
Lippuner2020]. With this approach, the complexity can be reduced to approximately 13 Gop/s. While still 
substantial, this is achievable using a dedicated hardware accelerator. 

Additionally, the SCA shall also handle the accumulation of the correlation values in a shared TCDM. It 
shall also detect if a sequence has been found, allowing for early termination in that case. 

3.6.5.3 Place in the System 

The SCA is a part of the Digital Base Band (DBB). It is controlled by the software running on the processor 
cluster via an APB register set as shown in Figure 3.6.5.3-1. It is able to directly receive IQ samples from 
the RF transceiver and gets timing information from the DBB timekeeping unit. It has high-bandwidth access 
to the local TCDM, where the correlation results are stored and accumulated. Once processing is 
completed, an interrupt is raised on the processor cluster. 

 

Figure 3.6.5.3-1: SCA in the DBB controlled over APB from a processor cluster. 
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3.6.5.4 Block Diagram 

Figure 3.6.5.4-1 shows the architecture of the SCA. The SCA primarily relies on a streaming length-2048 
FFT unit. It is used to transform both the correlation sequences and received samples to the frequency 
domain. After the correlation is computed using multiplication in the frequency domain, the FFT is used 
again to transform the correlation results back to time domain. A sample buffer at the input stores the 
incoming samples and absorbs the uneven consumption rate of the correlator. The final accumulation block 
decimates the time-domain correlation results and accumulates them in the TCDM. 

 

Figure 3.6.5.4-1: SCA architecture with sample buffer, streaming FFT and accumulator 

3.6.5.5 Clocking Strategy 

The SCA and its coupled memory use a single synchronous clock provided by the DBB. 

3.6.5.6 Reset Strategy 

An asynchronous reset is used to initialize the SCA after power on. A separate, synchronous clear can be 
used to return to the initial state. In the initial state, the SCA waits to be configured by the processor 
software. 

3.6.5.7 Power Management Strategy 

The SCA utilizes clock gating to reduce power consumption and the SCA can be powered down together 
with the rest of the DBB when no data reception is required. 

3.6.5.8 Verification Strategy 

The SCA is primarily verified against a bit-true software model in a stand-alone testbench, which enables 
full insight into the block. Additional observability in-system is provided by exposing the internal state using 
APB registers. 
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4 Conclusion 
This deliverable provided initial architecture definitions for the hardware modules and extensions to be 
developed within WP3 (Accelerators and Extensions) of the ISOLDE project, building on the previously 
defined initial demonstrator and hardware module requirements (Deliverable D1.1 and D1.2). The initial 
architecture definitions include details about each component's purpose and preliminary information about 
its design (placement in the system, functional description, interfaces, and strategies for clocking, resetting, 
power management, and debugging). The deliverable structure follows the tasks defined in WP3 to make 
it easier to relate the presented content and technical progress with the project proposal.  
 
Based on this document, the related work packages WP2 (providing the foundational cores), WP4 
(developing the necessary software support for using the hardware extensions), and WP5 (combining the 
foundational cores with selected hardware extensions creating diverse demonstrators) gain more insight 
about the developed hardware extensions and modules. Hence, this deliverable is crucial for further 
collaboration between these work packages and ISOLDE's goal to create high-performance processing 
systems. 
 
Regarding WP3, this deliverable will act as a starting point for subsequent deliverables covering the 
prototype and final implementations of the hardware extensions (D3.2, D3.3 in M24 and D3.4, D3.5 in M33). 
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5 Acronyms and Definitions 
Acronym Description 

ACC-BIKE ACCelerator for post-quantum key encapsulation mechanism BIKE 

ADC Analog-to-Digital Converter 

AES Advanced Encryption Standard 

AHB Advanced High-performance Bus  

AI Artificial Intelligence 

ALU   Arithmetic Logic Unit   

AMA AI/ML Accelerator 

AMBA Advanced Microcontroller Bus Architecture 

APB Advanced Peripheral Bus  

ASCON  Lightweight authenticated block cipher  

ASIC Application-Specific Integrated Circuit 

ASIP Application-Specific Instruction Set Processor 

ASLR Address Space Layout Randomization 

AXI Advanced eXtensible Interface 

AXI-MM AXI Memory Mapped 

AXIS AXI Stream 

BCFI   Backward-Edge Control Flow Integrity  

BRAM Block RAM 

BS Base Station 

CA-PMC Context-Aware Performance Monitor Counter 

CA-PMC-IF Context-Aware PMC Interface 

CBD Contract Based Design 

CCS Contention Cycles Stack  

CE Computing Element 

CFI Control Flow Integrity 

CNN Convolutional Neural Network 

CORDIC Coordinate Rotation Digital Computer  

COP Call-Oriented Programming 

CPU Central Processing Unit 

CPS Cyber-Physical Systems 

CSR Control and Status Register 
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CTM   Cryptographically Tagged Memory   

CV-X-IF Core-V eXtension Interface 

DBB Digital Base Band 

DDR (SDRAM) Double Data Rate Synchronous Dynamic Random Access Memory 

DES Data Encryption Standard 

DFT Discrete Fourier Transform 

DFU Decoder Functional Units 

DMA Direct Memory Access 

DMR Dual Modular Redundancy 

DSP Digital Signal Processor 

DSS Digital Signature Schemes 

DVS Dynamic Vision Sensor 

ECC Error Correction Code 

EMI    Enclave Memory Isolation   

ECNNA Event-based CNN Accelerator 

EXP EXtension Platform 

FCFI   Forward-edge Control Flow Integrity   

FFT Fast Fourier Transform 

FP Floating Point 

FPGA Field Programmable Gate Array 

FSM Finite State Machine 

FIFO First-In-First-Out 

FIR Finite Impulse Response 

FMA Fused-Multiply-Add 

FPMIX FPU for MIXed-precision computing 

FPU Floating Point Unit 

GEMM GEneral Matrix Multiply 

GPIO General Purpose Input/Output 

HARQ Hybrid Automatic Repeat Request 

HCI Heterogeneous Cluster Interconnect 

HDK Hardware Development Kit  

HLS High Level Synthesis 

HLS-PQC HLS-based Post-Quantum Cryptographic accelerator 

HMAC Hash-based Message Authentication Code 
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IEE   Inline Encryption Engine   

IEE-RV   Inline Encryption Engine RISC-V ISA extension   

INET Interconnection NETwork 

INTT Inverse Number Theoretic Transform  

IP Intellectual Property  

ISA   Instruction Set Architecture 

ISE Instruction Set Extension 

IUHF   Inverse Universal Hash Function   

JOP Jump-Oriented Programming 

KEM Key Encapsulation Mechanism 

KMAC KECCAK Message Authentication Code 

LDPC Low Density Parity Check Decoder 

LIF Leaky Integrate and Fire (neuron model)  

LSW Least Significant Word  

LLR Log Likelihood Ratio 

M Machine Mode 

MAC Multiply-Accumulate 

MC   Memory Controller   

MCCU Maximum Contention Control Unit 

MDPC Moderate-Density Parity-Check 

ML Machine Learning 

ML-DSA Module-Lattice-based – Digital Signature Standard  

ML-KEM Module-Lattice-based – Key Encapsulation Mechanism 

MMIO  Memory Mapped Input/Output  

MMU   Memory Management Unit 

MPSoC Multiprocessor System on a Chip 

MSW Most Significant Word 

NIST National Institute of Standards and Technology 

NoC Network on Chip 

NR New Radio 

NTT Number Theoretic Transform  

ONNX Open Neural Network eXchange 

OVI Open Vector Interface 

PC Program Counter 
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PCA Parallel Computing Accelerator 

PE Processing Engine  

PMP Physical Memory Protection   

PMU Performance Monitor Unit 

POR Power-On Reset 

PPA Power, Performance, and Area 

PQC Post-Quantum Cryptography 

PQC-MA Post-Quantum Crypto Accelerator 

PRF Polymorphic Register File 

PRINCE  Low-latency block cipher   

PRNG Pseudorandom Number Generator 

QC Quasi-Cyclic 

QUARMAv2  Lightweight tweakable block cipher  

RDC Request Duration Counter 

ReCo Row Column 

ReO Rectangle Only 

ReRo Rectangle Row 

ReTr Rectangle Transposed 

RF Radio Frequency 

RFOG Register File Organization Table 

RoCo Row Column 

ROM Read-Only-Memory 

ROP Return Oriented Programming 

RoT Root-of-Trust 

RSA Rivest–Shamir–Adleman 

RTL Register Transfer Level  

RTPM Run-Time Power Monitoring instrumentation 

RV32   32-bit RISC-V processor model   

RVV RISC-V Vector extension  

S Supervisor Mode 

SafeSU Safety-related Statistics Unit 

SafeTI Safety-related Traffic Injector 

SCA Shared Correlation Accelerator 

SCH SCHeduler 
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SCMI System Control and Management Interface 

SDK Software Development Kit  

SDRAM Synchronous Dynamic Random Access Memory 

SEC SECured RISC-V processor with cryptographic accelerators 

SHA Secure Hash Algorithms 

SIMD Single Instruction Multiple Data  

SLDU SLiDe Unit 

SLH-DSA Stateless Hash-Based Digital Signature Standard 

SM Security Monitor 

SNN Spiking Neutral Networks 

SoA State of the Art 

SoC System on a Chip 

SPI Serial Peripheral Interface 

SRAM Static Random-Access Memory 

TBS Transport Block Sizes 

TCCP Time Contract monitoring Co-Processor 

TCCP-CO Time Contract monitoring Co-Processor COmpiler  

TCDM Tightly-Coupled Data Memory 

TI Tweak Input 

TLUL TileLink Uncached Lightweight bus 

TMR Triple Modular Redundancy 

TPU Tensor Processing Unit 

U User Mode 

UE User Equipment 

UHF   Universal Hash Function   

IUHF Inverse Universal Hash Function  

VLSI Very Large Scale Integration 

VMFPU Vector Multiplier and Floating-Point Unit 

VPU Vector Processing Unit 

VRF Vector Register File   

WCET Worst-Case Execution Time 

XIF eXtension InterFace 
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