

Project: ISOLDE: Customizable Instruction Sets and Open Leveraged Designs of
Embedded RISCV Processors

Reference number: 101112274

Project duration: 01.05.2023 - 30.04.2026

Work Package: WP3: Accelerators and Extensions

Deliverable D3.1

Title Initial Architecture Definition

Type of deliverable: Report

Deadline: 30.04.2024

Creation date: 09.01.2024

Dissemination Level: PU - Public

Authors: Marcus Borrmann, Erik Kraft, Marcel Medwed - NXP-AT

Daniel Gracia Pérez, Sylvain Girbal - TRT

Stefan Wallentowitz, Matthias Rupp - HM

Holger Blasum - SYSGO

Jaume Abella, Francisco Fuentes, Sergi Alcaide, Francisco J. Cazorla, Ramon
Canal, Feng Chang, Juan Carlos Rodríguez, Juan Antonio Rodríguez, Xavier
Carril - BSC

Esther Soriano, Vicente Nicolau - FENTISS

Wolfgang Ecker, Endri Kaja, Jad Al Halabi - IFX

Mladen Berekovic, Christopher Blochwitz - UZL

Emanuele Parisi, Francesco Conti, Yvan Tortorella - UNIBO

Andrea Galimberti - POLIMI

Alexandru Pușcașu, Cătălin Ciobanu, Mihai Gologanu - IMT

Behnam Razi Perjikolaei - OFFIS

Mihai Munteanu, Honorius Galmeanu - FotoNation

Diego Gigena Ivanovich, Ambily Suresh, Andrew Wilson, Manuel Freiberger -
SAL

Maurizio Martina, Gianvito Urgese - POLITO

Matteo Perotti - ETHZ

Deliverable D3.1 ISOLDE Page: 2

D3.1 ISOLDE - public 17.05.2024

Andrei Stan, Cristian-Tiberius Axinte, George Uleru - TUI

Mari-Anais Sachian, Kejsi Koci, Cristina Tudor, George Suciu - BEIA

Michael Gautschi, Reza Ghanaatian, Stefan Lippuner - ACP

Jan Kaštil - CODA

Involved grant recipients: NXP Semiconductors Austria GmbH & Co KG (NXP-AT)

Thales SA as Thales Research & Technology (TRT)

Hochschule München University of Applied Sciences (HM)

SYSGO GmbH (SYSGO)

Barcelona Supercomputing Center (BSC)

Fent Innovative Software Solutions S.L. (FENTISS)

Infineon Technologies AG (IFX)

Universität zu Lübeck (UZL)

Universita di Bologna (UNIBO)

Politecnico di Milano (POLIMI)

Institutul National de Cercetare-Dezvoltare Pentru Microtehnologie (IMT)

OFFIS e.V. (OFFIS)

Fotonation SRL (FotoNation by Tobii)

Silicon Austria Labs GmbH (SAL)

Politecnico di Torino (POLITO)

Eidgenössische Technische Hochschule Zürich (ETHZ)

Technical University of Iasi (TUI)

BEIA Consult International SRL (BEIA)

ACP Advanced Circuit Pursuit AG (ACP)

Codasip SRO (CODA)

Contacts: Marcus Borrmann, NXP-AT, marcus.borrmann@nxp.com

Erik Kraft, NXP-AT, erik.kraft@nxp.com

Marcel Medwed, NXP-AT, marcel.medwed@nxp.com

mailto:marcus.borrmann@nxp.com
mailto:erik.kraft@nxp.comer
file:///C:/Users/nxf54887/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/IIYYDR6D/marcel.medwed@nxp.com

Deliverable D3.1 ISOLDE Page: 3

D3.1 ISOLDE - public 17.05.2024

Document History

Version Author Date Notes

0.1 Marcus Borrmann 09.01.24 Initial template draft

0.2 Marcus Borrmann 25.01.24 Incorporating partner feedback

0.3 All Partners 09.04.24 First version including partner contributions

0.4 Erik Kraft 24.04.24 Restructuring

0.5 Honorius
Galmeanu,
Frank K.
Gürkaynak

03.05.24 Review

0.6 All Partners 14.05.24 Review comments solved

0.7 Erik Kraft 17.05.24 Final cleanup

Deliverable D3.1 ISOLDE Page: 4

D3.1 ISOLDE - public 17.05.2024

Table of Contents
Table of Contents 4

1 Executive Summary 6

2 Introduction 7

2.1 General Information 7

2.2 Purpose and Scope 7

3 Accelerators and Extensions (WP3) 8

3.1 Safety and Security Modules 10

3.1.1 Inline Encryption Engine (IEE) – NXP-AT 11

3.1.2 Backward-Edge Control Flow Integrity (BCFI) – NXP-AT 18

3.1.3 Context-Aware Performance Monitor Counter (CA-PMC) – TRT 28

3.1.4 Cryptographically Tagged Memory (CTM) – NXP-AT 31

3.1.5 Enclave Memory Isolation (EMI) – NXP-AT 37

3.1.6 Forward-Edge Control Flow Integrity (FCFI) – NXP-AT 45

3.1.7 Memory Subsystem Support for Bytecode VMs – HM 47

3.1.8 Safety-Related Traffic Injector (SafeTI) – BSC 49

3.1.9 Safety and Security Control Unit – IFX 54

3.1.10 Safety Island - Interface Definition – UZL 61

3.1.11 Root-of-Trust Unit (RoT) – UNIBO 63

3.1.12 Root-of-Trust Unit Design and Interface with RISC-V Host Processor (TitanCFI) – UNIBO
 65

3.1.13 High-Performance Cache Analysis – SYSGO 68

3.2 Accelerator Infrastructure, Memories, Arithmetic Units, Interfaces and Virtualization
 70

3.2.1 FPU for Mixed-Precision Computing (FPMIX) – POLIMI 71

3.2.2 Floating-Point Unit for RISC-V (FPU) – UZL 73

3.2.3 Scratchpad – IMT 75

3.3 Monitoring Infrastructure 81

3.3.1 Context-Aware PMC Interface (CA-PMC-IF) – TRT 82

3.3.2 Run-Time Power Monitoring Instrumentation (RTPM) – POLIMI 84

3.3.3 Safety-Related Statistics Unit (SafeSU) – BSC 85

3.3.4 Time Contract Monitoring Co-Processor (TCCP) – OFFIS 95

3.4 SIMD/Vector, AI Accelerator and Tensor Processor Unit Design 97

3.4.1 AI/ML Accelerator (AMA) – FotoNation 98

3.4.2 CNN Accelerator for an Event-Based Sparse Neural Networks (ECNNA) – SAL 107

3.4.3 Parallel Computing Accelerator (PCA) – POLITO 109

Deliverable D3.1 ISOLDE Page: 5

D3.1 ISOLDE - public 17.05.2024

3.4.4 Tensor Processing Unit (TPU) – UNIBO 111

3.4.5 Vector Processing Unit (VPU) – ETHZ 115

3.4.6 Vector-SIMD Accelerator – IMT 118

3.4.7 Extension Platform (EXP) – TUI 127

3.5 Cryptographic and Security Accelerators 130

3.5.1 Accelerator for Post-Quantum Key Encapsulation Mechanism BIKE (ACC-BIKE) –
POLIMI 131

3.5.2 HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC) – BSC 133

3.5.3 Number Theoretic Transform Algorithms for Post Quantum Cryptography (NTT) – IMT
 141

3.5.4 Post-Quantum Crypto Accelerator (PQC-MA) – SAL 147

3.5.5 Secured RISC-V Processor with Cryptographic Accelerators (SEC) – BEIA 149

3.6 Signal Processing, Neuromorphic and Application-Specific Instruction Set
Processors (ASIPs) 153

3.6.1 Fast Fourier Transform Algorithms for SIMD and Vector Accelerators (FFT) – IMT 154

3.6.2 Low Density Parity Check Decoder (LDPC) – ACP 159

3.6.3 Motor Control Accelerator – CODA 162

3.6.4 Neuromorphic HW Accelerator – POLITO 166

3.6.5 Shared Correlation Accelerator (SCA) – ACP 168

4 Conclusion 170

5 Acronyms and Definitions 171

6 References 176

Deliverable D3.1 ISOLDE Page: 6

D3.1 ISOLDE - public 17.05.2024

1 Executive Summary
The ISOLDE project aims to create high-performance processing systems and platforms targeting different
use cases (space, automotive, smart home, cellular IoT) based on the free, open-source RISC-V instruction
set architecture. This document defines the initial architecture of the required hardware modules and
extensions (called extensions in the following) developed within the work package WP3 “Accelerators and
Extensions” of the ISOLDE project to reach this goal. It encompasses contributions from all tasks (T3.1 to
T3.6) and partners within WP3.

The extensions described in this report are grouped into different domains matching the scope of the
different tasks within WP3:

1. Extensions enhancing the safety and security of RISC-V systems (T3.1)
2. Accelerator infrastructure, memories, arithmetic units, interfaces, and virtualization (T3.2)
3. Extensions that allow monitoring of the foundational core and accelerators (T3.3)
4. Accelerators speeding up vector, tensor, and other AI-related operations (T3.4)
5. Accelerators speeding up cryptographic primitives (T3.5)
6. Accelerators speeding up signal processing, neuromorphic operations, and application-specific

instruction set processors (T3.6)

For each extension, this document contains general information (type, dependencies, and license) and an
initial architecture description giving a first insight into its purpose and internals. These initial architecture
descriptions answer core questions about each extension:

• What is the purpose of the extension?

• Where in the system is it integrated?

• How does the extension work?

• How is the extension connected with the rest of the system? How can they interact?

• How is the extension verified?

WP5 “Use Cases and Demonstrators” will combine the foundational cores developed by WP2 “Open-source
Foundation Cores” and selected features from WP3, building diverse demonstrators (space, automotive,
smart home, cellular IoT) that highlight benefits and opportunities enabled by individual extensions. Further,
WP4 “System Software, Development Tools and Automation” will provide the required software support
(e.g., toolchains, operating system support, drivers). Hence, the contributions of this deliverable are crucial
for further collaboration with these work packages. In the context of WP3, this deliverable is the basis for
the follow-up deliverables covering the prototype and final implementations of the extensions (D3.2, D3.3
in M24 and D3.4, D3.5 in M33). The components described in this deliverable are aiming at different
maturity levels and aiming for different certifiability. Further, this document represents the first iteration of
the architecture definitions and hence not all contributions have the same level of maturity. A short survey
of the ISOLDE partners for certification intentions (including WP3 components) will be later provided by
SYSGO as part of WP1 work.

Deliverable D3.1 ISOLDE Page: 7

D3.1 ISOLDE - public 17.05.2024

2 Introduction

2.1 General Information

Work Package 3 (WP3) focuses on developing hardware modules and extensions enhancing RISC-V
systems based on the foundational cores provided by WP2 to create and demonstrate high-performance
computing systems within WP5.

The purpose of Deliverable D3.1, titled "Initial Architecture Description", is to document the preliminary
design of these hardware modules and extensions. This document is intended for public release and
includes the hardware extensions' initial architecture and design specifications. These initial architecture
and design specifications encapsulate the extensions' technical research and developmental progress.

It is crucial to note that this document represents the first iteration of the Deliverable, marking the
commencement of a bottom-up approach to address all ongoing activities comprehensively. Throughout
the project's duration, the report will undergo multiple revisions to encapsulate the breadth of work
completed to date.

WP3 organizes the project into distinct tasks covering different domains, with various partners contributing
to each. The deliverable is structured first to introduce WP3 and its place in the overall ISOLDE project in
Section 3. The subsections of Section 3 outline the tasks ranging from Task 3.1 to 3.6, offering an initial
summary of each task followed by a table that outlines the extensions and the respective partners involved.
The remainder of these subsections contains in-depth technical information about the specific extensions.

2.2 Purpose and Scope

This document serves as an essential guide to the ISOLDE project's activities, detailed through its technical
descriptions of the hardware extensions. These descriptions not only review the past endeavours but also
set the stage for the upcoming tasks. The primary goal of the initial architecture descriptions within this
document is to offer preliminary insights into the project's features. This includes detailing the purpose,
dependencies, and architectural nuances of each feature—covering aspects such as their system
placement, block diagrams, instruction set architecture (ISA), interfaces, sub-modules, and strategies for
clocking, resetting, power management, verification and debugging. Note that these aspects are not
explicitly covered for every hardware extension in this document either because the aspect is not relevant
for the extension, the information is not noteworthy (e.g., standard practice) or the development state is not
yet mature enough. Such detailed information is crucial for seamless integration and collaboration with
related work packages: WP2, which focuses on the development of foundational cores; WP5, which merges
these cores with selected features; and WP4, which develops the requisite software support. Within the
framework of WP3, this deliverable lays the groundwork for subsequent reports that will document the
prototyping and final implementations of these features, specifically Deliverables D3.2 and D3.3 due in
Month 24, and D3.4 and D3.5 scheduled for Month 33.

Deliverable D3.1 ISOLDE Page: 8

D3.1 ISOLDE - public 17.05.2024

3 Accelerators and Extensions (WP3)
WP3 focuses on two directions: i) safety, security and monitoring infrastructure and ii) acceleration
infrastructure, domain specific accelerators and ASIPs for applications such as cryptography, machine
learning and signal processing.

Figure 3-1: Overview of the IPs developed in WP3.

Work Package 3 “Accelerators and Extensions” receives the requirements and specifications from Work
Package 1 and delivers accelerators and extensions to Work Package 5 “Use Cases and Demonstrators”.
WP3 cooperates with Work Package 2 “Open-source Foundation Cores” to integrate the accelerators and
Safety & Security Extensions with the general-purpose cores using interfaces and drivers. WP3 designs
are used in WP4 to develop software tools. WP6 provides WP3 feedback regarding potential software

Deliverable D3.1 ISOLDE Page: 9

D3.1 ISOLDE - public 17.05.2024

licensing issues. Regarding exploitation of the results, WP3 peripherals, modules and accelerators are
made available via the developing partners or via the WP6 open-source repository channels. WP3
contributes to Milestone MS2 – Foundations. Figure 3-2 shows the interaction between WP3 and the other
work packages.

Figure 3-2: PERTT chart showing Sequence and Interactions in the ISOLDE Project

WP3 is organized in six tasks, and all tasks run in parallel from M3 to M33: T3.1 “Safety & Security Modules”;
T3.2. “Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization”; T3.3 “Monitoring
infrastructure”; T3.4. “SIMD/Vector, AI accelerator and tensor processor unit design”; T3.5. “Cryptographic
and security accelerators”; T3.6. “Signal processing, neuromorphic and application-specific instruction set
processors (ASIPs)”. A top-view description of the work carried on in this package is synthesized by Figure
3-1. WP3 contributes to the following Specific Objectives (SOs): SO2, SO4, SO5, SO6 and SO7.The overall
WP3 objectives as listed in the Description of the Action are:

• Encourage the development of open-source accelerators and extensions while ensuring their

compatibility with closed-source IP, helping to widen the RISC-V ecosystem (SO2, SO5, SO6,

SO7);

• Design hardware modules and extensions supporting and enhancing RISC-V safety and security

(SO4);

• Design hardware accelerators targeting specific applications domains and exploiting available

parallelism (SO2, SO5);

• Incorporate custom fixed- and floating-point units to allow trade-offs between precision and

throughput (SO2, SO5);

• Design scratchpad memories for hardware accelerators (SO2, SO5);

• Develop a monitoring infrastructure to expose the relevant figures of merit for the hardware designs

developed in this WP (SO2, SO5);

• Each hardware block developed in this WP will be verified at the RTL level, including unit testing

and a testbench which verifies the required functionality (SO6).

Deliverable D3.1 ISOLDE Page: 10

D3.1 ISOLDE - public 17.05.2024

3.1 Safety and Security Modules

Task 3.1, M3-M33, Task Leader: BSC

Task 3.1 focuses on the development of technologies supporting safety and security. The developed
security modules include components for memory encryption, control flow integrity (CFI), memory isolation,
hardware support for bytecode virtual machine interpreters, and hardware root of trust. On the safety side,
the T3.1 modules include a context-aware performance monitor counter, a traffic injector for platform
validation, a safety control unit collecting and processing detected on-chip errors, and an interface between
the safety island and the processing system.

IP
Lead

Beneficiary
Type Domain Dependencies Licensing

IEE NXP-AT
RISC-V Core
extension; Core

Security None
Proprietary
closed source

BCFI NXP-AT
RISC-V Core
extension

Security
RV32I processor,
IEE

Proprietary
closed source

CA-PMC TRT Core Safety
Integration target,
CA-PMC-IF

TBD

CTM NXP-AT
RISC-V Core
extension

Security
RV32I processor,
IEE

Proprietary
closed source

EMI NXP-AT
RISC-V Core
extension

Security
RV32I processor,
IEE

Proprietary
closed source

FCFI NXP-AT
RISC-V Core
extension

Security RV32I processor
Proprietary
closed source

Memory
Subsystem
Support for
Bytecode VMs

HM
RISC-V Core
extension

Security None
Permissive open
source (SHL-
2.1, Apache-2.0)

SafeTI BSC Core Safety None
Permissive open
source (MIT)

Safety and
Security Control
Unit

IFX Core
Safety,
Security

None Open source

Safety Island UZL Core Safety CVA6 Open source

RoT UNIBO Core Security OpenTitan
Permissive open
source (Apache
/ SHL)

TitanCFI UNIBO

CVA6
extension;
OpenTitan
extension

Security CVA6, OpenTitan
Permissive open
source
(Apache-2.0)

High-
Performance
Cache Analysis

SYSGO Analysis Security
CVA6, CEA cache
(TRISTAN) Not applicable

Table 3.1-1: Overview of contributions in Task 3.1

https://github.com/openhwgroup/cva6
https://opentitan.org/
https://github.com/openhwgroup/cva6
https://opentitan.org/
https://github.com/openhwgroup/cva6

Deliverable D3.1 ISOLDE Page: 11

D3.1 ISOLDE - public 17.05.2024

3.1.1 Inline Encryption Engine (IEE) – NXP-AT

Part of Task 3.1 Safety & Security Modules.

3.1.1.1 General Information

Different workloads and secrets are usually isolated using the processor’s privilege modes and logical
isolation techniques (e.g., memory protection and management units). The RISC-V ISA defines three
privilege levels: machine (M), supervisor (S), and user (U) mode. At any point, a RISC-V core is running in
one of these privilege levels. The different privilege levels enable the isolation of different units in the
software stack. For example, software running in M mode (e.g., the firmware) has unrestricted access to all
resources and configuration registers. On the other hand, software running in S (e.g., the operating system)
or U (e.g., user applications) mode is more restricted. In this setting, trusted software (e.g., the operating
system) running in a higher privilege mode with the capability to configure the logical isolation sets up a
restricted memory view for the workloads running in the lower privilege modes. However, this isolation
breaks as soon as physical attacks are considered. Examples of such attacks include:

• Attacks physically probing the external memory bus between the processor and memory chip.

• Attacks injecting faults in the logical isolation primitives or during their configuration by the trusted
software [Nashimoto2021].

• Attacks using fault injection to modify the data in the memory [Roscian2013]. Note that software-

based attacks can also trigger fault injections in memory, as Rowhammer [Kim2014] showed. 

Major processor vendors started integrating memory encryption engines into their architectures to mitigate
these threads transparently [Kaplan2021, Intel2021]. The memory encryption engine encrypts all data
before it reaches the external bus. The resulting ciphertext depends on the physical address (used as tweak)
in addition to the secret key to counter attacks exchanging the encrypted data words. The hardware
samples the memory encryption key from a random number generator at each reset and stores it in a non-
accessible register.

In systems with an enabled memory encryption engine, all data on the external bus and in memory is
encrypted. Therefore, the attacker can no longer leak data or easily inject controlled modifications. If a pure
encryption scheme is used as a primitive for memory encryption, then the confidentiality of the data on the
external bus and in memory is protected. However, the integrity of the data cannot be ensured, meaning
the attacker can perform modifications without detection. Still, the attacker cannot change the plaintext in a
controlled way, assuming the relationship between plaintext and ciphertext is unknown, i.e., the attacker
has no way to build a dictionary of plaintext-ciphertext pairs for the address. Alternatively, authenticated
encryption schemes can be used, which also provide data integrity but have a higher memory overhead.

Memory encryption engines prevent or raise the bar for many physical attacks, but they also impose
considerable area and latency overhead while not increasing resilience against logical attacks.

3.1.1.2 Purpose and Scope

The Inline Encryption Engine (IEE) module adds a tweakable memory encryption engine based on a low-
latency block cipher to the base RV32 core. The difference to the schemes mentioned in the previous
section is that we use a tweak input to make the resulting ciphertext depend on additional metadata. This
metadata is provided by other modules contributed by NXP-AT, which add defense mechanisms against
logical attacks. For more information about these modules, please refer to the architectural description of
the Backward-Edge Control Flow Integrity (BCFI; see Section 3.1.2), Cryptographically Tagged Memory
(CTM; see Section 3.1.4), and Enclave Memory Isolation (EMI; see Section 3.1.5) module provided by
NXP-AT. Systems that already include a memory encryption engine especially benefit from this approach,

as adding the mentioned defenses against logical attacks comes at little cost.

Deliverable D3.1 ISOLDE Page: 12

D3.1 ISOLDE - public 17.05.2024

3.1.1.3 Place in the System

The IEE module targets RV32 cores without a Memory Management Unit (MMU). Figure 3.1.1.3-1 shows
that the IEE module is placed before the memory controller (MC), acting as a wrapper for the memory
requests issued by the cache subsystem. Hence, the IEE module has two bus interfaces (e.g., Arm
Advanced Microcontroller Bus Architecture Advanced High-performance Bus – AMBA AHB), one
connecting it to the cache subsystem and the other to the memory controller. Further, the IEE module
requires the IEE-RV ISA extension and changes to the cache subsystem which will all be described in the
following. Note that the IEE module can also be integrated into processors without a cache, but then the
latency of the memory encryption and decryption has more impact on the core’s performance.

Figure 3.1.1.3-1: Overview of the IEE module in the system

3.1.1.4 Block Diagram

Figure 3.1.1.4-1 shows the internals of the IEE module. The IEE module is placed before the memory
controller to ensure that all data on the bus to and in the memory is encrypted. Therefore, it is connected
to the cache subsystem which issues memory requests (ahb_cache) and the memory controller (ahb_mem).

The cache subsystem also provides a tweak (tweaki) together with the memory request. The tweak

together with the secret key (ieekeyi) defines the permutation used for encryption and decryption.

Therefore, an attacker cannot determine the plaintext associated with a certain ciphertext block without
knowing the correct key and tweak. The contents of the tweak are passed along with the memory requests
issued by the processor (tagged transactions) and are defined by NXP-AT’s countermeasures built on top
of the IEE module (BCFI, EMI, CTM). Attacks within the scope of these modules cannot trigger memory
requests with a tweak matching the genuine tweak of any protected data in memory. Hence, an attacker
cannot leak or perform controlled modifications of the protected data. For more information, see the
architecture description of the modules mentioned above. Finally, the IEE module is connected to the
Control and Status Registers (CSRs) of the main RV32 core containing the encryption key (ieekey) and

the top address of the encrypted memory region (mieeencend). These ISA modifications are part of the

IEE-RV ISA extension and are described in more detail in the Section 3.1.1.5. If the requested memory
location is greater or equal to the value in the mieeencend CSR, then the memory encryption is bypassed.

RISC-V Processor

RV32
Core

I Cache D Cache

EMI IEE-RV

BCFI CTM

FCFI

L2 Cache IEE MC Main Memory

AHB

Described Here
Other NXP-AT
Contributions

Deliverable D3.1 ISOLDE Page: 13

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.1.4-1: Internal architecture of the IEE module

The selection of the actual block cipher used in the IEE module depends on the specific use case,
performance requirements and threat model. More information on the requirements of a suitable block
cipher in our threat model, which includes logical attacks, is presented in Section 3.1.1.7.

If the processor design includes caches, then they must be adapted so that the tweak inputs generated by
NXP AT’s countermeasures are able to propagate from the processor through the cache subsystem to the
memory encryption engine, where they are needed to form the final encryption tweak. Figure 3.1.1.4-2
shows the required changes using an L2 cache as example.

Figure 3.1.1.4-2: IEE - Modifications to the L2 cache

As can be seen in Figure 3.1.1.4-2, an additional tweak input (TI) field was added to the cache line which

contains outputs of NXP-AT’s countermeasures that should influence the encryption:

• encl_tweak: Provided by NXP-AT’s EMI module enabling enclave isolation and confidential

compute.

Tweakable
Low-Latency

Block Cipher /
Scrambling

IEE Controller

K

M

T

C

ahb_cache ahb_mem

ieekeyi

tweaki

To Memory
Controller

From
Cache Subsystem

From Processor CSRs
(IEE-RV ISA
extension)

mieeencendi

Way0

Wayn

L2 Cache

TI Tag V Data

TI Tag V Data

.

.

.

D

D

encl_tweak color bcfi privctmencl_tweak color bcfi privctm

encl_tweak

priv
bcfi
ctm

color

addr
data
write

From
Lower-Level

Cache

To
Memory

Controller

addr

ctm
color tweak

addr

encl_tweak

bcfi
priv
data

write

data

write

64 bits
config-
urable

2 bits1 bit1 bit

Deliverable D3.1 ISOLDE Page: 14

D3.1 ISOLDE - public 17.05.2024

• color, ctm: Provided by NXP-AT’s CTM module defending against exploitation of memory safety

vulnerabilities.

• bcfi: Provided by NXP-AT’s BCFI module enabling a cryptographic-isolated shadow stack

protecting return addresses spilled on the stack.

• priv: Included to enforce cryptographic isolation of different privilege modes.

When issuing a memory request to the memory controller these fields are combined to form the final
encryption tweak as follows (“||” denotes a bitwise concatenation of bit vectors where the most significant
bit vectors are the leftmost ones):

tweak = encl_tweak || tagged_addr || bcfi || priv

tagged_addr denotes a CTM-protected address including the color and CTM selection bit (see NXP-AT’s
CTM module architecture description in Section 3.1.4 for more information).

The same changes apply for L1 data caches. However, for L1 instruction caches, the TI field will not contain

the color, ctm and bcfi subfields as the related countermeasures are not relevant for instruction memory,

instead these fields are hardcoded to 0. The cache modifications also include changes to the cache hit logic
and replacement policy to guarantee the security claims and ensure correct function:

• A cache hit only occurs if the Tag and TI field of the cache line match the ones of the memory

request.

• A cache miss occurs if the Tag field does not match, or if the Tag field matches and the TI field

does not. In the second case, the replacement logic must always select the cache line with the
mismatching TI field as replacement candidate. This behavior avoids cache aliasing where multiple

cache lines would be associated with the same physical address. Otherwise, cache aliasing could
lead to inconsistency and security problems.

Note that the block size of the cipher shall match the minimum access size performed by the cache
subsystem to avoid unnecessary read-modify-write scenarios. Further, the encrypted region must be
cacheable if caches are included in the design. Access to non-cacheable regions bypasses the memory
encryption as such access would come with a higher latency penalty especially for sub-word stores.

The described redesign of the cache subsystem inflicts a significant overhead in the area consumed by the
caches because of the large encl_tweak subfield in the TI field. For example, if the cache line size is 32

byte and 12-bit colors are used the overhead would be 31.25%. However, in practice, the overhead can be
significantly reduced by storing the enclave tweaks in a separate lookup table and linking them to the
appropriate cache lines in the TI field instead of including the full enclave tweak. If an enclave tweak in the

lookup table is replaced in such an implementation, then all cache lines linking to this enclave tweak must
also be evicted.

In the described design, other peripherals which function as bus managers apart from the main RV32 core,
like a Direct Memory Access (DMA) controller, can only exchange data with the main core by operating in
the unencrypted memory area (greater or equal to mieeencend). These bus managers shall not be able to

access the encrypted region, and they shall use a special tweak isolated from the tweaks of the main RV32
core (for example, by using the unused encoding 10 for the priv field), enforcing cryptographic isolation in

addition. Enabling other bus managers to access an encrypted region requires the trusted software to be
able to bind them to a security domain (e.g., only a specific enclave can access the peripheral) and provide
a proper encryption tweak to the peripheral so that it can access a shared encrypted region.

3.1.1.5 ISA

The IEE module requires an ISA extension of the RV32 core (IEE-RV) to allow the main processor to
provide the encryption key and address range where the encryption is active. The next sections describe
modified and new design parameters, CSRs, instructions, and exceptions introduced by the IEE-RV
extension. In systems with multiple bus masters the described CSRs shall rather be implemented as

Deliverable D3.1 ISOLDE Page: 15

D3.1 ISOLDE - public 17.05.2024

memory-mapped registers of the IEE module. Otherwise, the value of the registers might change during
the operation of the IEE module leading to inconsistency problems. If the CSRs are moved to memory-
mapped registers, then the bus must include appropriate privilege information so that only privileged and
trusted software of the main core can access these registers.

Design Parameters

Parameter Value Function

IEE_ENCRYPTION_BASE TBD1 Base address of the encrypted
memory region

IEE_ENABLE 1 Determines if the Inline Encryption
Engine module is included in the
design. If it is not included, then also
none of the modules based on it can
be included (NXP-AT’s BCFI, CTM,
EMI).

Table 3.1.1.5-1: IEE module design parameters

CSRs

CSR Index Privilege Bits Function

ieekey0 TBD2 M-RW 31-0 Least Significant Word
(LSW) of the key for memory
encryption

ieekey1 TBD2 M-RW 31-0 32-bits of the key for memory
encryption

ieekey2 TBD2 M-RW 31-0 32-bits of the key for memory
encryption

ieekey3 TBD2 M-RW 31-0 Most Significant Word
(MSW) of the key for memory
encryption

mieeencend TBD2 M-RW

31-0 One byte beyond the last
address of the encrypted
memory region

uieeencend TBD2 U-R

31-0 User-mode read-only alias of
mieeencend

(if, e.g., allocator needs this
info)

1 This parameter depends on the memory map of the system to which the IEE module should be added.

2 These indices depend on the free CSR addresses in the processor to which the IEE-RV extension should
be added.

Deliverable D3.1 ISOLDE Page: 16

D3.1 ISOLDE - public 17.05.2024

Table 3.1.1.5-2: CSRs added by the IEE-RV module.

Note that writes to these CSRs should only be retired after flushing the pipeline and after all pending
memory operations are completed. Otherwise, memory access by subsequent instructions may
unintentionally still use the previous configuration or pending memory access might already use the new
configuration. Both scenarios lead to a bypass of the cryptographic isolation in the worst case.

3.1.1.6 Interfaces

The IEE module uses the same interface as used to connect the L2 cache and memory controller (e.g.,
AHB). Additionally, the L2 cache provides the tweak inputs to the IEE module.

3.1.1.7 Sub-Modules

The IEE module requires a suitable implementation of a tweakable low-latency block cipher. The
requirements for suitable schemes are described in the following section.

Tweakable Low Latency Block Cipher

A tweakable low-latency block cipher suitable for our threat model including logical attacks shall fulfill the
following requirements:

• The block size shall match the minimal access size performed by the cache subsystem (if the
design includes caches) but shall be at least 32-bit.

• The algorithm shall provide 128-bit security against key recovery.

• The tweak shall be large enough to accommodate the previously described tweak inputs
(depending on which countermeasures are included) and provide security against online tweak
recovery.

• The block cipher shall be non-malleable.

• The acceptable latency of the encryption and decryption operations depends on the performance
requirements. If the design includes caches (especially a last-level cache with write-back policy),
then the IEE has less impact on performance as not every memory access has to pass through the
memory encryption engine. Hence, in this case the latency requirements can be more relaxed.

Depending on the performance requirements and additional security requirements (e.g., integrity protection)
solutions built on top of different block ciphers, for example, PRINCEv2 [Božilov2020],
QUARMAv2 [Avanzi2023] or ASCON [Dobraunig2016] can be built.

3.1.1.8 Clocking Strategy

The IEE wrapper and included block cipher clock frequency depend on the latency requirements for
memory encryption and decryption.

3.1.1.9 Reset Strategy

The IEE module uses the same reset line as the memory controller.

3.1.1.10 Power Management Strategy

If the memory controller and its connected memory are power gated or going to a power saving mode, then
likewise the IEE module can do so.

Deliverable D3.1 ISOLDE Page: 17

D3.1 ISOLDE - public 17.05.2024

3.1.1.11 Debugging Strategy

The RISC-V processor’s debug module shall be limited to accessing the memory from a hart’s point of view
using the program buffer and not via the system bus access if the IEE module is included in the design.
The system bus access mode cannot provide the appropriate tweaks as they depend on the state of the
RV32 core. Hence, loads and stores with addresses in the encrypted region would lead to wrong results.
Even if memory is accessed via the program buffer, the RV32 core must still be in an appropriate state. For
example, if a user wants to access a memory location related to Enclave 2, then debug mode must have
been entered from Enclave 2, or the debugger must have set the appropriate enclave modifiers.

Suppose the RV32 core is in debug mode. In that case, the memory encryption engine shall be bypassed
for instruction fetches to allow normal execution of the debug ROM and instructions in the debug program
buffer. Further, the debugger must set the memory access privilege to the privilege mode the hart was
executing in before entering debug mode. Otherwise, the memory encryption tweaks will not match the
current state of the art. Hence, the debug module implementation must not tie dcsr.mprven to 0

 [Donahue2024]. Then, the debug translator can set the proper memory access privilege by performing the
following sequence after entering debug mode:

1. Set dcsr.mprven to 1 (if not fixed).

2. If dcsr.prv is M and mstatus.mprv is set, skip the following steps.

3. Back up the state of the mstatus.mprv and mstatus.mpp fields.

4. Set mstatus.mprv to 1 and mstatus.mpp to dcsr.prv.

When returning from debug mode, the debug translator shall restore the mstatus.mprv and mstatus.mpp

field values.

Additionally, if the debug translator wants to modify text sections (e.g., for inserting software breakpoints),
it must follow these steps:

1. Back up the value of the effective enclave store modifier selected using the dcsr.prv field (see

also the architecture description of NXP-AT’s EMI module in Section 3.1.5).
2. Set the effective enclave store modifier to 0.
3. Perform the necessary changes in the instruction memory region.
4. Restore the effective enclave store modifier.

As mentioned above, the core must be in an appropriate state to correctly access memory, which also
applies to instruction memory. Alternatively, the user can add hardware breakpoints implemented using the
trigger module. Those are directly compatible with NXP-AT’s IEE module without changes.

Deliverable D3.1 ISOLDE Page: 18

D3.1 ISOLDE - public 17.05.2024

3.1.2 Backward-Edge Control Flow Integrity (BCFI) – NXP-AT

Part of Task 3.1 Safety & Security Modules.

3.1.2.1 General Information

According to Google Project Zero, memory corruption vulnerabilities are the most used path to gain
unintended remote control over digital devices [GoogleProjectZero2024]. In 2023, 75% of zero-day exploits
in the wild were based on memory corruption vulnerabilities. Programming languages like C and C++ that
offer neither memory nor type safety are especially affected. While memory-safe programming languages
(like Rust) gain momentum, C is still one of the most popular programming languages [Cass2022],
especially for embedded system development. Making matters worse, constrained embedded
environments include only subsets of the defense mechanisms employed in larger systems (e.g., no
address space layout randomization or low entropy), leading to easier exploitation. Hence, during the
transition period to memory-safe programming languages or for legacy code, additional security layers are
needed to mitigate these attack paths, especially for constrained embedded devices.

3.1.2.2 Purpose and Scope

The exploitation of memory safety vulnerabilities allows an attacker to unintendedly corrupt, or leak program
data. On the one hand, introducing malicious changes may enable an attacker to modify the program
behavior and take over control. On the other hand, unintended leakage of data may lead to the attacker
learning sensitive information like the value of cryptographic keys. Memory safety vulnerabilities can be
separated into spatial bugs (out-of-bound reads and writes) and temporal bugs (reusing a dangling pointer
after the associated memory block was given back to the allocator).

One typical target of exploits arising from memory safety issues are return addresses spilled on the stack
as modifying them allows the attacker to jump to any wanted address. Such exploits, which aim to modify
the backward-edge control flow of programs, are among the most common and known ones. The typical
attack path is to exploit wrong or missing bounds checks of a user-controllable input that is written to a
buffer on the stack leading to overwritten stack contents including return addresses. Early attacks overwrote
the return address and injected the attacker code on the stack, jumping to the injected code using the
modified return address.

Subsequent countermeasures, like W^X (no execution of writeable memory regions), resulted in more
advanced attack techniques like return-to-libc, Return-Oriented Programming (ROP), Jump-Oriented
Programming (JOP), or Call-Oriented Programming (COP). These attacks do not inject shellcode crafted
by an attacker, but instead chain together available gadgets (snippets of code useful for the attacker) in the
victim’s instruction memory to achieve the attacker’s goal.

Modern operating systems include more advanced countermeasures like stack canaries and Address
Space Layout Randomization (ASLR) to increase the resilience regarding these advanced attack types.
Stack canaries aim to protect return addresses from buffer overflows by inserting a unique value between
the function data and the saved return address on the stack. The canary will be overwritten if the attacker
tries to overwrite the return value by exploiting a buffer overflow. As the canary value is compared to the
expected one in the function epilogue, the attack is detected before returning from the function. ASLR
randomizes the start location of a program’s address space portions (code, stack, heap, libraries). This
randomization hides addresses of useful gadgets from an attacker leading to probabilistic mitigation.

Still, all these countermeasures have weaknesses. Stack canaries do not help against an attacker with an
arbitrary write primitive, as the canary can just be skipped. ASLR may not be available on 32-bit embedded
systems or has low entropy there. Further, both are vulnerable to information disclosure attacks.

Hence, shadow stacks were invented as a stronger alternative. A shadow stack duplicates all return
addresses on the regular stack in a separate isolated memory region. The isolation guarantees that only
special instructions can access the shadow stack while regular memory operations cannot access it.

Deliverable D3.1 ISOLDE Page: 19

D3.1 ISOLDE - public 17.05.2024

Therefore, an attack can only overwrite return addresses on the regular stack, but not on the shadow stack.
Before executing the return in the function epilogue, the return address from the regular stack is compared
with the return address on the shadow stack. If they do not match, then an attack is detected, and the
execution terminates with an appropriate exception. RISC-V International specified a shadow stack design
for RISC-V in the Zicfiss extension [RV-SS-LP-TG2024].

The shadow stack specified in Zicfiss requires that the processor includes a MMU to realize the isolation
and hence may not be suitable for small 32-bit platforms (microcontrollers). Instead, our BCFI module
isolates the shadow stack cryptographically using a tweakable memory encryption engine like NXP-AT’s
IEE module (Section 3.1.1). Such an approach is beneficial for systems which already include a memory
encryption engine to fulfil their security requirements. Then, this memory encryption can be reused to
implement a shadow stack at little additional cost. Shadow stack operations use encryption tweaks different
from other memory operations to implement the before mentioned isolation cryptographically. However,
while encrypting the shadow stack with tweaks different to other memory regions could be already achieved
by using NXP-AT’s CTM module (Section 3.1.4), it is not sufficient against all attack scenarios. For example,
even if the encryption additionally depends on the physical address, an attacker can still exchange return
addresses located at the same stack depth (physical address) but recorded at different points in time.

Therefore, our approach is an adoption of the scheme proposed by the PACStack paper [Liljestrand2021].
At every function call, the return address is used to update a hash value stored in an isolated register
(sstca). The intermediate hash values are spilled to the stack (plus encrypted by the BCFI-specific memory

encryption) instead of the return addresses. For the hash computation we use an invertible universal hash
function (UHF and its inverse IUHF). Hence, knowing the topmost hash value and the intermediate hash

values, the return addresses can be reconstructed in the function epilogues. The topmost hash value
represents all return addresses on the stack, i.e., if any return address would change, then this change
would lead to a statically unique topmost hash value. Therefore, any successful attack would require either
modifying the topmost hash value or a value on the shadow stack in a controlled way, both are not feasible
(mitigated by the isolated register and the memory encryption respectively). If an attacker still attempts to
modify a value on the shadow stack, then the resulting return address will be random, and the attack will
be detected as it does not match the value on the regular stack. This concept is illustrated in the Figure
3.1.2.2-1.

Figure 3.1.2.2-1: BCFI - Cryptographically isolated shadow stack

Regular Stack Shadow Stack

Stack Frame
Function

Invocation 0

Stack Frame
Function

Invocation 1

ra0

ra1

sstca

init

UHF IEE

BCFI ||
sspK

ca0

ca1

sstca

UHF IEE

BCFI ||
sspK

IUHF

sstca

IEE

BCFI ||
sspK

sstca

ra1

IUHFIEE

BCFI ||
sspK

sstca

ra0

Deliverable D3.1 ISOLDE Page: 20

D3.1 ISOLDE - public 17.05.2024

Note that instead of duplicating the return addresses, they can only be stored on the shadow stack resulting
in no memory overhead (also called control stack mode). However, then attacks cannot be detected
anymore, instead the reconstructed return address will be random and likely lead to a fault preventing
exploitation.

3.1.2.3 Place in the System

The BCFI module is an ISA extension for RV32 cores as can be seen in Figure 3.1.2.3-1. Further, it requires
changes to the cache architecture and depends on a suitable tweakable memory encryption engine. These
contributions are not described here, but in the section describing NXP-AT’s IEE module (Section 3.1.1).

Figure 3.1.2.3-1: Overview of the BCFI module in the system

3.1.2.4 Block Diagram

Figure 3.1.2.4-1 shows the internal architecture of the BCFI module. The figure also indicates to which
pipeline stages and modules inside the RV32 core the BCFI module will be connected. The description
assumes that the base core has 7 pipeline stages (instruction fetch, decode, register access, execute,
memory, exception, write-back).

RISC-V Processor

RV32
Core

I Cache D Cache

EMI IEE-RV

BCFI CTM

FCFI

L2 Cache IEE MC Main Memory

AHB

Described Here
Other NXP-AT
Contributions

Deliverable D3.1 ISOLDE Page: 21

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.2.4-1: Internal architecture of the BCFI module

The BCFI module extends the ISA of the RV32 core with multiple instructions, listed in the tables below.
The corresponding operations are added to the normal Arithmetic Logic Unit (ALU) which gets its inputs
from the Execute Stage (every instruction except for sslw and sspopchck - see Table 3.1.2.5-4), or the

late ALU, which gets its inputs from the Exception Stage as one of the operands must be loaded from
memory (for sslw and sspopchck). Further inputs come from the CSRs related to the shadow stack

operation (ssp, sstca, mieeencend, mseccfg, menvcfg and senvcfg). The regular ALU must contain a

module for universal hashing (UHF) and the late ALU a module for computing the inverse (IUHF) required

for the hashing and reconstruction of the return addresses. The ALUs output an updated shadow stack
state (sspno, sstcano) and an output value (resulto) which are passed to the next stage. Additionally,

an error signal (bcfi_op_erroro) is asserted if a security check fails. The error signal will lead to the

processor jumping to an appropriate exception handler. For a detailed description of the BCFI instructions
and other ISA changes refer to the next section.

3.1.2.5 ISA

The BCFI module extends the ISA of the base RV32 core. The next sections describe modified and new
design parameters, CSRs, instructions, and exceptions. In the following, BLEN denotes the block size of
the memory encryption in bits (see also the description of NXP-AT’s IEE module in Section 3.1.1). Note
that the referenced IEE_ENCRYPTION_BASE design parameter and mieeencend CSR are part of NXP-AT’s

IEE module and described there. The instruction encodings and assembly syntax match the one defined
by the official Zicfiss extension [RV-SS-LP-TG2024] allowing compilers supporting this extension being
reused for our cryptographically isolated shadow stack. Note that the instructions required for control stack
mode (sslw, ssincp) match version 0.3.1 of the Zicfiss extension [RV-SS-LP-TG2023] which was the

current version at the time of development. The ratification of control stack mode has been postponed in

Late ALU (sslw, sspopchk)

seli

op1i
bcfi_op_erroro

resulto
Pass on to

Write-Back Stage

From Exception
 Stage

ALU

op1i

bcfi_op_erroro

resulto

Pass on to
Write-Back Stage

Pass on to
Exception Stage

From Execute
 Stage

op2i
(from memory)

mieeencendi, mseccfgi, menvcfgi, senvcfgi
sspi

sstcai
From
CSRs

sspno
sstcano

incl.
UHF

incl.
IUHF

seli

op2i
sspno

sstcano

sstcao
To LD/ST unit

Deliverable D3.1 ISOLDE Page: 22

D3.1 ISOLDE - public 17.05.2024

favour of a simpler and easier to ratify first version of the extension, but the control stack is expected to be
ratified with the next update.

Design Parameters

Parameter Default Value Function

BCFI_ENABLE 1 Determines if the BCFI module is

included in the design.

Table 3.1.2.5-1: BCFI module design parameters

CSRs

In the following tables, the privilege column gives the minimum required privilege mode (first letter) to
access the CSR and which access types are allowed (last two letters). For example, M-RW means M-mode
has read and write access, but lower privilege modes have no access.

CSR Index Privilege Bits Function

ssp 0x011 U-RW 31-0 Shadow Stack Pointer

sstca3 TBD4 U-RW (BLEN-
1)-0

Topmost Chained Address

(topmost hash value)

ssuhfx3 TBD4 M-RW (BLEN-
1)-0

Parameter X of UHF

ssuhfxinv3 TBD4 M-RW (BLEN-
1)-0

Parameter X-1 of IUHF

Table 3.1.2.5-2: CSRs added by the BCFI module.

The access conditions for ssp and sstca further depend on the state of the BFCI module (enabled, disabled)

in the current privilege level. If BCFI is disabled, then access to these CSRs raises an
IllegalInstruction exception.

CSR Index Privilege Field Bit(s) Function

mseccfg 0x747 M-RW SSUP 3 M-mode shadow stack grows in upward
direction.

SSCHK 4 If set, then ssp < sp is asserted at

instructions accessing the regular stack or
the shadow stack in M mode. Only
meaningful if SSUP is also set.

3 May require multiple CSRs depending on BLEN but represented as single CSR as simplification.

4 These indices depend on the free CSR addresses in the processor to which the BCFI module should be
added.

Deliverable D3.1 ISOLDE Page: 23

D3.1 ISOLDE - public 17.05.2024

menvcfg 0x30A M-RW SSE 3 Shadow stack enabled in S mode

SSUP 8 S-mode shadow stack grows in upward
direction.

SSCHK 9 If this flag and MENVCFG.SSE are set, then

ssp < sp is asserted at instructions

accessing the regular stack or the shadow
stack in S mode. Only meaningful if SSUP is

also set.

senvcfg 0x10A S-RW SSE 3 Shadow stack enabled in U mode

SSUP 8 U-mode shadow stack grows in upward
direction.

SSCHK 9 If this flag and SENVCFG.SSE are set, then

ssp < sp is asserted at instructions

accessing the regular stack or the shadow
stack in U mode. Only meaningful if SSUP is

also set.

Table 3.1.2.5-3: CSRs modified by the BCFI module.

Note that the shadow stack is always enabled in M mode. SSUP allows to place the regular stack and the

shadow stack in the same memory region growing towards each other. Additionally, SSCHK can be used to

detect when the stacks overlap in this scenario.

The ssp < sp assertion only works correctly if the executed code complies with the RISC-V (E)ABI

[RVI2024] (sp is at least 8-byte aligned, sp is mapped to register x2, sp offsets are only positive). If xSSCHK

is enabled, then an implementation can optionally assert that sp (x2) is 8-byte aligned and that offsets of

memory operations using sp (x2) are positive. If any of the above-described assertions fails, a

SoftwareCheck exception (xCAUSE=18, xTVAL=4) shall be raised.

Instructions

All memory accesses performed by the operations of the BCFI module set the BCFI flag in the tweak
propagated to the memory encryption engine to isolate them from all other memory operations. For more
information, see the description of NXP-AT’s IEE module (Section 3.1.1). Note that shadow stacks must be
aligned to the cache line size as the IEE module stores tweaks at a cache line granularity. The following
operation description makes use of the symbol “…” to denote a slice of memory, i.e., memory[start … end]
denotes the byte range in memory starting with start until (exclusive) end (like slices in Python). Note that
all BCFI memory accesses must be BLEN/8-aligned, otherwise a StoreAccessFault exception should be

raised.

Instruction Operation

sspush rs (rs={x1,x5})

c.sspush (rs=x1)

Push to shadow stack

if (xSSE = 1)
{
 addr = xSSUP ? ssp + (BLEN / 8) : ssp - (BLEN / 8)
 if (is_access_outside_iee_region(addr, BLEN / 8))
 {
 /* xCAUSE=18, xTVAL=5 */
 raise SoftwareCheckException(5)
 }
 memory[addr … addr + (BLEN / 8)] = sstca
 t = UHF(rs, sstca)
 /* only at retirement */

Deliverable D3.1 ISOLDE Page: 24

D3.1 ISOLDE - public 17.05.2024

 sstca = t
 ssp = addr
}

sslw rd (rd={x1,x5})

Load from shadow stack

if (xSSE = 1)
{
 addr = ssp
 if (is_access_outside_iee_region(addr, BLEN / 8))
 {
 /* xCAUSE=18, xTVAL=5 */
 raise SoftwareCheckException(5)
 }
 t = memory[addr … addr + (BLEN / 8)]
 rd = IUHF(sstca, t)
 /* only at retirement */
 sstca = t
}
else
{
 /* Zimop default behavior */
 rd = 0
}

ssincp
c.ssincp

Increase shadow stack
pointer

if (xSSE= 1)
{
 ssp = xSSUP ? ssp - (BLEN / 8) : ssp + (BLEN / 8)
}

sspopchk rs (rs={x1,x5})
c.sspopchk (rs=x5)

Pop from shadow stack and
compare with link register

if (xSSE = 1)
{
 addr = ssp
 if (is_access_outside_iee_region(addr, BLEN / 8))
 {
 /* xCAUSE=18, xTVAL=5 */
 raise SoftwareCheckException(5)
 }
 t1 = memory[addr … addr + (BLEN / 8)]
 t2 = IUHF(sstca, t1)
 if (t2 != rs)
 {
 /* xCAUSE=18, xTVAL=3 */
 raise SoftwareCheckException(3)
 /* trap handler might restart instruction! */
 }
 /* only at retirement */
 sstca = t1
 ssp = xSSUP ? ssp - (BLEN / 8) : ssp + (BLEN / 8)
}

ssrdp rd

Read ssp into a register

if (xSSE = 1)
{
 rd = ssp
}
else
{
 /* Zimop default behavior */
 rd = 0
}

ssamoswap.w rd, rs2, (rs1)

Atomic swap from shadow
stack location

if (xSSE = 1)
{
 addr = rs1
 if (is_access_outside_iee_region(addr, BLEN / 8))
 {
 /* xCAUSE=18, xTVAL=5 */
 raise SoftwareCheckException(5)

Deliverable D3.1 ISOLDE Page: 25

D3.1 ISOLDE - public 17.05.2024

 }
 /* perform atomically with sequential consistency */
 rd = memory[addr … addr + (BLEN / 8)]
 memory[addr … addr + (BLEN / 8)] = rs2
}
else
{
 /* xCAUSE=2 */
 raise IllegalInstructionException
}

Table 3.1.2.5-4: Instructions added by the BCFI module.

ssamoswap behaves like a regular amoswap.w, but it sets the BCFI flag in the memory encryption tweak.

The Table 3.1.2.5-4 refers to xSSE, xSSCHK, xSSUP and the function is_access_outside_iee_region()
which are defined below:

xSSE =
{
 if (in M mode)
 return 1
 /* below M mode */
 else if (menvcfg.SSE == 0)
 return 0
 /* below S mode */
 else if (S mode implemented && in U mode && senvcfg. SSE == 0)
 return 0
 else
 return 1
}

xSSCHK =
{
 if (xSSE == 0)
 return 0
 if (in M mode)
 return mseccfg. SSCHK
 else if (in S mode)
 return menvcfg. SSCHK
 else if (in U mode)
 return (S mode implemented) ? senvcfg.SSCHK : menvcfg. SSCHK
}

xSSUP =
{
 if (in M mode)
 return mseccfg.SSUP
 else if (in S mode)
 return menvcfg.SSUP
 else if (in U mode)
 return (S mode implemented) ? senvcfg.SSUP : menvcfg. SSUP
}

is_access_outside_iee_region(addr, size)

Deliverable D3.1 ISOLDE Page: 26

D3.1 ISOLDE - public 17.05.2024

{
 access_last_offset = size - 1
 access_last = addr + access_last_offset
 if ((addr >= IEE_ENCRYPTION_BASE) && (access_last < mieeencend))
 return false
 return true
}

Exceptions

Exception Code Description

SoftwareCheckException 18 Synchronous exception which is triggered when there are
violations of checks and assertions with regards to the integrity
of software assets. The exact cause can be determined by
examining the xTVAL register:

• 3: Raised when sspopchk detects a tampered return

address.

• 4: Raised when the regular stack and shadow stack
overlap (ssp >= sp).

• 5: Raised when a shadow stack operation attempts to
access memory outside the encrypted region.

Table 3.1.2.5-5: Exceptions causes added by the BCFI module.

3.1.2.6 Sub-Modules

The BCFI module requires submodules implementing a universal hash function (UHF) and its inverse
(IUHF). The requirements for these modules are described in the following subsections.

UFH

The UHF module must fulfill the following requirements:

• The UHF module shall allow updating the 32-bit hash state by taking the previous 32-bit hash state
and a 32-bit message (i.e., return value) as inputs. The updated hash state shall be available at
the output.

• The UHF shall be parameterizable using the ssuhfx CSR.

• The UHF shall have a collision resistance close to the theoretical bound given by the birthday
paradox.

IUHF

The IUHF module must fulfill the following requirements:

• The IUHF module shall allow to reconstruct the 32-bit message from the corresponding and
previous 32-bit hash state.

• The IUHF shall be parameterizable using the ssuhfxinv CSR.

3.1.2.7 Debugging Strategy

The RISC-V debug module and NXP-AT’s IEE module must be configured in the right way to enable correct
debug functionality in the presence of the memory encryption engine required for the BCFI module. For
more information, see the specification of NXP-AT’s IEE module (Section 3.1.1).

Deliverable D3.1 ISOLDE Page: 27

D3.1 ISOLDE - public 17.05.2024

Additionally, toolchain support is beneficial in control stack model to allow the debugger to unwind the stack
correctly.

Deliverable D3.1 ISOLDE Page: 28

D3.1 ISOLDE - public 17.05.2024

3.1.3 Context-Aware Performance Monitor Counter (CA-PMC) – TRT

Part of Task 3.1 Safety & Security Modules.

3.1.3.1 General Information

The Context Aware Monitoring framework is a set of IPs to enhance the monitoring IPs with context
information and standardize the same monitoring IPs deployed in a system on a chip (SoC). The context
information is typically defined by a context controller which typically is a core defining the context in which
the events monitored are issued. The Context Aware Monitoring framework is composed of 4 different IPs
(or IPs extensions): the CA-CORE, the CA-BUS, the CA-PMC (described in this section), and the CA-PMC-
IF (Section 3.3.1).

3.1.3.2 Purpose and Scope

The CA-PMC's purpose, as a regular Performance Monitor Counter, is to count events of some kind (e.g.,
cache misses, cache hits, etc.), but providing means of filtering the counted events on some system defined
context.

The CA-PMC implementation is highly dependent on the IP (e.g., cache) the CA-PMC is integrated in, but
at minimum, in addition to the counter register it should have a register to store the context that should be
used for filtering the events. The IP integrating the CA-PMC should have also the means to receive the
context of the event from the source generating the event (e.g., cache read access), so the IP can transfer
the event with the associated context to the CA-PMC.

In the context of ISOLDE, we will target the SoC caches as IP integrating the CA-PMC (and CA-PMC-IF to
configure the CA-PMC and retrieve data from the CA-PMC).

3.1.3.3 Place in the System

The CA-PMCs are extended Performance Monitoring Counters to be placed in the different IPs of the
system, as shown in the example Figure 3.1.3.3-1. They count the different events produced in the IP in
dedicated registers. Unlike regular PMCs which count all the events that happen in the IP (e.g., all cache
misses in a cache), the CA-PMCs allow the events to be filtered by a context. The actual meaning of the
context depends on how the system is configured, but typically the context will refer to the initiator of the
request that caused the event on the IP (e.g., the process that caused the cache miss event).

The CA-PMC only performs the event counting logic, configuration of the CA-PMC and reading of its event
counting registers is performed through the CA-PMC-IF module (Section 3.3.1).

Deliverable D3.1 ISOLDE Page: 29

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.3.3-1: CA-PMC - Place in the Context Aware Monitoring infrastructure system

In the project's context, the Instruction and Data L1 Caches CA-PMCs will be targeted. Additional CA-PMCs
might be developed be developed if time and effort are available.

3.1.3.4 Block Diagram

Figure 3.1.3.4-1 shows a high-level and preliminary view of the CA-PMC block diagram inside an L1 cache,
but it could be any other IP, and how it is connected to the CA-PMC-IF module (Section 3.3.1) and the IP
internals. The CA-PMC has multiple counter registers to monitor the events from the IP and can receive
signals from the IP being monitored and the CA-PMC-IF module. Associated to each counter register there
is a configuration register that defines:

• if the counter is active or not,

• which is the event that the counter register monitors,

• and which is the context to monitor.

A logic in front of each counter register manages the update of the counter register depending on the IP
incoming event and associated context. If the incoming event id and context match the configuration register
values, the counter register is updated. The configuration register and the counter register provide
interfaces for the CA-PMC-IF module for reading and writing them. Based on this basic design enhanced
implementations can be developed providing new functionalities like threshold configuration to generate
interrupts when a counter reaches a value.

Deliverable D3.1 ISOLDE Page: 30

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.3.4-1: CA-PMC - Block diagram

3.1.3.5 Interfaces

The CA-PMC is connected with two different IPs (see Figure 3.1.3.4-1):

• A CA-PMC-IF module (Section 3.3.1) enabling the CA-PMC configuration and the read of the
counter registers it contains, and

• the IP being monitored.

CA-PMC and monitored IP

Communication happens from the monitored IP to the CA-PMC. A basic interface defines N bit sized
connections, one for each type of event the IP can generate, and a context-sized connection indicating the
context of the request that generated the event. Both connections are clock synchronized.

IPs that can generate multiple events during the same cycle will require a queue to provide the events
sequentially to the CA-PMC.

CA-PMC and CA-PMC-IF

A register write/read interface controlled by the CA-PMC-IF is required between the CA-PMC-IF and the
CA-PMC.

3.1.3.6 Reset Strategy

At system reset the CA-PMC configuration registers should be initialized to not monitor any event. CA-PMC
counter registers should be initialized to a default value (zero).

Deliverable D3.1 ISOLDE Page: 31

D3.1 ISOLDE - public 17.05.2024

3.1.4 Cryptographically Tagged Memory (CTM) – NXP-AT

Part of Task 3.1 Safety & Security Modules.

3.1.4.1 Purpose and Scope

As explained in Section 3.1.2, memory corruption vulnerabilities are the most used path to gain remote
control over digital devices. In Section 3.1.2, we introduced the BCFI module that helps to counter attackers
exploiting memory safety issues to modify return addresses spilled on the stack. However, there are also
other assets located on the stack, heap, or in global objects that are of interest to attackers, such as:

• Function pointers

• Values indirectly affecting the control flow (e.g., evaluated in conditional branches)

• Sensitive data like cryptographic keys

Fine-grained protection of such assets within the context of one task surpasses the capability of traditional
protection measures like memory protection or management units. Memory tagging can be used to
minimize this gap. It assigns additional metadata, the color, with memory blocks of a defined size. Every
genuine pointer and its associated memory blocks are assigned the same statistically unique color at
memory allocation. Therefore, only the designated pointer received from the allocator can be used to
access the allocated data. This lock-and-key mechanism prevents out-of-bound accesses (spatial bugs)
using another pointer or accesses using a dangling pointer (temporal bugs) as shown in Figure 3.1.4.1-1.

Figure 3.1.4.1-1: CTM - Memory tagging overview (top: out-of-bounds access, bottom: use-after-free)

Note that the colors must be stored additionally to the rest of the data increasing the overall memory usage.
Therefore, existing memory tagging implementations, like Armv8.5-A MTE [arm2024], allocated only few
bits for the colors, making them unsuitable for security purposes. Cryptographically tagged

Memory

0x00

0x1f

0x20

0x3f

0x40

0x9f

color mismatch,
access denied

char x = p[0x20];

Pointer

char *p = 0x20

Color Address

;

Memory

0x00

0x1f

0x20

0x3f

0x40

0x9f

color mismatch,
access denied

Pointer

char *p = 0x20

Color Address

;

char x = p[0x00];

free(p);
/* addr(q) == addr(p) */
char *q = malloc(0x20);
memcpy(q, secret, 0x20);

Deliverable D3.1 ISOLDE Page: 32

D3.1 ISOLDE - public 17.05.2024

memory [Nasahl2021] avoids this additional memory overhead by implicitly linking memory blocks with the
genuine color. This implicit association is achieved by including the color in the tweak for memory encryption
and decryption. Hence, this technique allows to use more bits for the color without increasing the memory
overhead if a memory encryption engine is available. The major behavioral difference to the original scheme

is that an attacker can still misuse pointers to access unintended memory blocks5. However, it is much
harder to perform a successful attack as accesses triggered from a misused pointer will not be useful:

• Suppose misusing a pointer triggers an out-of-bounds read. Then, the decryption results are wrong
as the color does not match ensuring the confidentiality of the corresponding data.

• Suppose misusing a pointer triggers an out-of-bounds write. Then, the color of the genuine pointer
will not match the one of the misused pointers. Hence, the attacker cannot modify the data in a
controlled way.

Until now, cryptographically tagged memory has only been applied to 64-bit processors where the designers
used unimplemented bits in the virtual address space to store the colors. The CTM module adds
cryptographically tagged memory to 32-bit processors without introducing the requirement of a memory
management unit. The smaller address space poses additional challenges as no unused bits in pointers
are available, and therefore, we developed a different strategy to include the colors in the pointer.

3.1.4.2 Place in the System

The CTM module is an ISA extension for RV32 cores without a MMU (microcontrollers) as can be seen in
Figure 3.1.4.2-1. Further, it requires changes to the cache architecture and depends on a suitable
tweakable memory encryption engine. These contributions are not described here, but in the section
describing NXP-AT’s IEE module (Section 3.1.1).

Figure 3.1.4.2-1: Overview of the CTM module in the system

3.1.4.3 Block Diagram

Figure 3.1.4.3-1 shows the internal architecture of the CTM module. The figure also indicates to which
pipeline stages and modules inside the RV32 core the CTM module will be connected. The description

5 In addition, such scheme can easily be turned into one which prevents the attacker from misusing pointers
by using authenticated encryption, however, then again, additional storage is needed for storing the tags.
Nevertheless, this might be already present.

RISC-V Processor

noel-V
32 bit

I Cache D Cache

EMI IEE-RV

BCFI CTM

FCFI

L2 Cache IEE MC Main Memory

AHB

Described Here
Other NXP-AT
Contributions

Deliverable D3.1 ISOLDE Page: 33

D3.1 ISOLDE - public 17.05.2024

assumes that the base core has 7 pipeline stages (instruction fetch, decode, register access, execute,
memory, exception, write-back).

Figure 3.1.4.3-1: Internal architecture of the CTM module

The CTM module extends the ISA of the RV32 core with two instructions (ctmtag, ctmuntag). ctmtag adds

a color to a pointer and ctmuntag removes a color from a tagged pointer. These new operations are

depicted by the ALU symbol in Figure 3.1.4.3-1. The CTM module also includes a Pseudo-Random Number
Generator (PRNG) as the colors should be statistically unique. Note that users can only assign colors to
memory blocks with a size and alignment matching the cache line size. Hence, allocators must assure that
the allocated region has the correct alignment and size, else the instructions will raise an exception. For
more detailed information about the behavior of these instructions, see Section 3.1.4.4.

Further, if the CTM module is present, the RV32 core performs additional steps before memory requests
are passed to the cache controller. As shown in Figure 3.1.4.3-1, the following steps are performed for
CTM-protected addresses (bit at position CTM_EXPLICIT_SELECTION_BIT is set):

• The CTM module extracts the color and raw address (without color and bit at position
CTM_EXPLICIT_SELECTION_BIT) from the address received from the LD/ST unit. It recomputes the

address for the memory request as the raw address plus the CTM_EXPLICIT_REGION_OFFSET

constant. The determined CTM state (ctmo), color (coloro) and address (addro) serve as input

for the cache controller.

• The module checks if the raw address lies outside the memory region where memory encryption is
active (above or equal to the value in the mieeencend CSR). If so, then it reports an error as CTM

cannot protect memory blocks that do not go through the memory encryption engine.

New Instructions

CTM_EXPLICIT_

SELECTION_BIT

CTM Color Bits

CTM Address Bits

addri

mseccfgi CTME

mieeencendi

A

B

0

0

10

addri

CTM_EXPLICIT_REGION_OFFSET

PRNG

seli

op1i

Color Extraction

ctm_op_erroro

resulto

coloro

addro

ctm_acccess_erroro

Pass on to
Memory Stage

(D Cache Controller)

Pass on to
Write-Back Stage

Pass on to
Exception Stage

Pass on to
Exception Stage

From CSRs

From CSRs

From LD/ST Unit

From Execute
 Stage

ctmo

Deliverable D3.1 ISOLDE Page: 34

D3.1 ISOLDE - public 17.05.2024

For more information about the CTM_EXPLICIT_SELECTION_BIT and CTM_EXPLICIT_REGION_OFFSET

constants, see Section 3.1.4.4.

The cache subsystem may hand over the memory access request to the main memory and its encryption
engine. The tweak used by the memory encryption engine will include the forwarded color. After the request
is completed, the color will be stored in the cache line alongside the decrypted data. For more information
about the changes to the cache subsystem and the memory encryption engine, see NXP-AT's IEE module
(Section 3.1.1).

3.1.4.4 ISA

The CTM module extends the ISA of the RV32 core. The next sections describe modified and new design
parameters, CSRs, instructions, and exceptions. In the following, L denotes the cache line size used in the
processor (either 32 or 64 bytes) and rand() indicates a value read from the PRNG. Note that the referenced
mieeencend CSR is part of NXP-AT’s IEE module and described there.

Design Parameters

Parameter Default Value Function

CTM_EXPLICIT_SELECTION_BIT TBD6 Indicates which address bit selects
between tagged and untagged
pointers. The chosen address bit
must not be used in the memory map
of the processor.

CTM_EXPLICIT_REGION_OFFSET

TBD6 This value is ORed to the untagged
address (replacing the zeroed color
bits) before a memory access is
performed. Hence, it can be used to
move the start address of the CTM-
protected region.

CTM_TAG_MASK TBD6 Mask to indicate which address bits of
a tagged pointer contain the color
bits.

CTM_ENABLE 1 Determines if the Cryptographically
Tagged Memory module is included
in the design.

Table 3.1.4.4-1: CTM module design parameters

CSRs

In the following table, the privilege column gives the minimum required privilege mode (first letter) to access
the CSR and which access types are allowed (last two letters). For example, M-RW means M-mode has
read and write access, but lower privilege modes have no access.

6 These parameters depend on the memory map of the system to which the CTM module should be added.

Deliverable D3.1 ISOLDE Page: 35

D3.1 ISOLDE - public 17.05.2024

CSR Index Privilege Field Bit(s) Function

 mseccfg 0x747 M-RW CTME 5 CTM enable for all privilege modes

Table 3.1.4.4-2: CSRs modified by the CTM module.

Instructions

Instruction Function

ctmtag rd, rs

Adds a random color to the value in
rs and stores the result in rd.

if (mseccfg.CTME == 0) {
 /* xCAUSE=2 */
 raise IllegalInstructionException
}

if (rs & (1 << CTM_EXPLICIT_SELECTION_BIT) ||
 rs & (L-1) != 0)
{
 /* xCAUSE=18, xTVAL=11 */
 raise SoftwareCheckException(11)
}

if ((rs & CTM_TAG_MASK) != CTM_EXPLICIT_REGION_OFFSET ||
 rs >= mieeencend)
{
 /* xCAUSE=18, xTVAL=10 */
 raise SoftwareCheckException(10)
}

rd = (rs & ~ CTM_TAG_MASK) | (rand() & CTM_TAG_MASK) |
 (1 << CTM_EXPLICIT_SELECTION_BIT)

ctmuntag rd, rs

Removes the color from the value in
rs and stores the result in rd.

if (mseccfg.CTME == 0)
{
 /* xCAUSE=2 */
 raise IllegalInstructionException
}

if (rs & (1 << CTM_EXPLICIT_SELECTION_BIT))
{
 addr = rs & ~(1 << CTM_EXPLICIT_SELECTION_BIT)
 addr &= ~CTM_TAG_MASK
 addr |= CTM_EXPLICIT_REGION_OFFSET
}
else
{
 /* xCAUSE=18, xTVAL=12 */
 raise SoftwareCheckException(12)
}
if (addr >= mieeencend)
{
 /* xCAUSE=18, xTVAL=10 */
 raise SoftwareCheckException(10)
}

rd = addr

Table 3.1.4.4-3: Instructions added by the CTM module.

Exceptions

Exception Code Description

SoftwareCheckException 18 Synchronous exception which is triggered when there are
violations of checks and assertions regarding to the integrity of

Deliverable D3.1 ISOLDE Page: 36

D3.1 ISOLDE - public 17.05.2024

software assets. The exact cause can be determined by
examining the xTVAL register:

• 10: Raised if a to-be-tagged (ctmtag) or untagged

(ctmuntag, memory operations) address points to

memory outside the defined CTM region.

• 11: Raised by ctmtag if the address in rs is already

tagged or not correctly aligned.

• 12: Raised by ctmuntag if the address in rs is not

tagged.

Table 3.1.4.4-4: Exceptions causes added by the CTM module.

3.1.4.5 Sub-Modules

The CTM module requires the availability of a PRNG.

PRNG

The CTM module includes a PRNG for generating the colors needed for the tagging of pointers. The PRNG
must fulfill the following requirements:

• The entropy should at least match the (configurable) color size so that the probability of neighboring
memory blocks with matching colors is as low as possible.

• Observing the color values of tagged pointers should not allow an attacker to predict future color
values.

3.1.4.6 Debugging Strategy

The RISC-V debug module and NXP-AT’s IEE module must be configured in the right way to enable correct
debug functionality in the presence of the memory encryption engine required for the CTM module. For
more information, see the specification of NXP-AT’s IEE module (Section 3.1.1).

Additionally, toolchain support is beneficial as the debugger can only read the correct values from tagged
memory blocks if the correct color is provided.

Deliverable D3.1 ISOLDE Page: 37

D3.1 ISOLDE - public 17.05.2024

3.1.5 Enclave Memory Isolation (EMI) – NXP-AT

Part of Task 3.1 Safety & Security Modules.

3.1.5.1 General Information

On modern systems, often a range of workloads run simultaneously on the same physical general-purpose
processor. Running diverse workloads on one processor is cost-efficient as it reduces hardware complexity
and reuses the existing infrastructure as much as possible. However, it is often the case that the different
workloads use assets with varying sensitivity levels. Users may not trust every workload, and the vendors
of the different workloads may not trust each other. Hence, it must be prevented that one workload can leak
sensitive information related to another workload. Traditionally, this isolation is guaranteed by enabling
processors to execute instructions in different privilege modes and to limit which memory can be accessed
by a workload (e.g., memory protection or management units). In such a setting, critical configuration
settings, like memory access permissions, can only be accessed by trusted software (usually the operating
system) running in higher privilege modes. Hence, the trusted software can isolate workloads by setting
suitable memory access permissions before lowering the privilege mode and jumping to the scheduled
workload. Switching from one workload to another is done during a so-called context switch. A context
switch is usually triggered by a timer interrupt, which will cause the processor to enter the highest privilege
mode and execute an appropriate handler. During a context switch, the trusted software performs the
following steps:

1. Save the current processor state associated with the active workload.
2. Determine which workload shall be run next.
3. Restore the processor state of the workload scheduled to run next. The restored processor state

also includes the appropriate memory access permissions. After this step, the execution will
continue with the selected workload in the lower privilege mode.

 The isolation of different workloads serves two main purposes:

• Confidentiality: A malicious workload cannot access any data of another workload.

• Integrity: A malicious workload cannot modify another workload's data without detection.

However, research has shown that this logical isolation may be bypassed in malicious environments. For
example, logical isolation is insufficient against a range of physical attacks:

• By physically probing the memory bus between the processor and external memory chip the
attacker could leak sensitive data.

• Advanced techniques like laser fault injection could flip bits in memory modifying the behavior of
software using these values [Roscian2013]. Note that there is also a software-based attack, called
Rowhammer [Kim2014], that can achieve bit flips in DRAM.

• Researchers showed that attacking the context switch by injecting faults also breaks logical
isolation [Nashimoto2021]. Their work presents a fault attack that skips instructions reconfiguring
the memory access permissions for the scheduled workload, allowing the scheduled workload
unintended access to data of the previous workload.

Adding a memory encryption engine that encrypts all data before it is stored in memory mitigates the first
attack example, raises the bar for the second as injecting controlled modifications is harder, but does not
help against the third example without additional countermeasures.

3.1.5.2 Purpose and Scope

As described in the previous section, logical isolation is insufficient to protect sensitive information in a
malicious environment. Hence, the purpose of the EMI module is to enable workload-specific memory
encryption for RISC-V cores together with NXP-AT’s IEE module (Section 3.1.1). Further, the design of the
EMI module mitigates the impact of fault attacks including skipping instructions during the context switch.

Deliverable D3.1 ISOLDE Page: 38

D3.1 ISOLDE - public 17.05.2024

Using the EMI module, the confidentiality of the data associated with different workloads is protected
cryptographically without reliance on logical isolation. Note that NXP-AT’s IEE module (Section 3.1.1) only
provides encryption without integrity protection to keep the memory overhead as small as possible. Hence,
if used without logical isolation, malicious modifications of data associated with another workload are
possible and cannot be detected directly. However, controlled modifications are only possible if a suitable
value from a matching address is replayed, as the encryption tweaks will differ for every workload. Further,
if a tweakable authenticated memory encryption engine is already available this can be incorporated with
NXP-AT’s IEE module (Section 3.1.1) and modifications can be detected.

Combining the classical logical isolation and the cryptographic isolation provided by the EMI module results
in stronger security guarantees (e.g., mitigation of the previously explained attacks). These stronger
guarantees benefit use cases requiring strong isolation between workloads like trusted execution
environments. Keystone [Kohlbrenner2020] is an example of a RISC-V framework that allows the creation
and management of trusted execution environments. In the case of Keystone, the untrusted workloads are
run in isolated compartments called enclaves and interact with the main operation system called host. The
enclaves run in privilege modes below M-mode and are managed by a trusted M-mode software called
security monitor (SM). Figure 3.1.5.2-1 shows an overview of the different entities isolated by Keystone and
which data they can access.

Figure 3.1.5.2-1: EMI - Entities isolated by Keystone.

3.1.5.3 Place in the System

The EMI module is an ISA extension for RV32 cores without a MMU (microcontrollers) as can be seen in
Figure 3.1.5.3-1. Further, it requires changes to the cache architecture and depends on a suitable
tweakable memory encryption engine. These contributions are not described here, but in the section
describing NXP-AT’s IEE module (Section 3.1.1).

Deliverable D3.1 ISOLDE Page: 39

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.5.3-1: Overview of the EMI Module in the system

3.1.5.4 Block Diagram

Figure 3.1.5.4-1 shows the internal architecture of the EMI module. The symbol “||” denotes the
concatenation of bits or bit vectors where the most significant bits are always the leftmost. The figure also
indicates to which pipeline stages and modules inside the RV32 core the EMI module will be connected.
The description assumes that the base core has 7 pipeline stages (instruction fetch, decode, register access,
execute, memory, exception, write-back).

RISC-V Processor

RV32
Core

I Cache D Cache

EMI IEE-RV

BCFI CTM

FCFI

L2 Cache IEE MC Main Memory

AHB

Described Here
Other NXP-AT
Contributions

Deliverable D3.1 ISOLDE Page: 40

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.5.4-1: Internal architecture of the EMI module

ls_encl_tweako Pass on to
Memory Stage

(D Cache Controller)

ls_privi

csr.ufetchmod1 || csr.ufetchmod0

csr.mstatus.mprv

csr.prv

csr.mstatus.mpp

csr.mfetchmod1 || csr.mfetchmod0

csr.sfetchmod1 || csr.sfetchmod0

csr.uloadmod1 || csr.uloadmod0

csr.mloadmod1 || csr.mloadmod0

csr.sloadmod1 || csr.sloadmod0

csr.ustoremod1 || csr.ustoremod0

csr.mstoremod1 || csr.mstoremod0

csr.sstoremod1 || csr.sstoremod0

ls_seli

From LD/ST Unit

f_encl_tweako Pass on to
Fetch Stage

(I Cache Controller)

csr.prv
f_privi

csr.ufetchmod1 || csr.ufetchmod0

csr.mfetchmod1 || csr.mfetchmod0

csr.sfetchmod1 || csr.sfetchmod0

efetchmod

eloadmod

estoremod

Deliverable D3.1 ISOLDE Page: 41

D3.1 ISOLDE - public 17.05.2024

As can be seen in the Figure 3.1.5.4-1, most of the inputs to the EMI module come from the CSRs including
the modifiers that are used to build the enclave-specific tweaks used for memory encryption. Every modifier
consists of two CSRs to provide sufficient protection against brute-force guessing attacks. Writes to modifier
CSRs cause a pipeline flush if the modifier affects the execution of the current privilege mode. For more
information about these CSRs, see Section 3.1.5.5. The prv CSR represents the privilege mode the

processor is currently executing in. This CSR is only used internally and cannot be accessed with
instructions. The last input comes from the LD/ST unit and determines whether memory access is a load
or store. The effective fetch, load, and store modifiers are selected according to the effective privilege mode.
For instruction fetches, the effective privilege mode (f_privi) always matches the processor's current

privilege mode. However, the privilege mode can be overridden for load and store operations using the
MPRV and MPP fields in the mstatus CSR [Waterman2021]. If MPRV is set, then the privilege level encoded

in the MPP field is used for load and store operations instead of the processor's current privilege mode. We

also comply with this behavior by using the resulting effective memory access privilege mode (ls_privi)

to select the effective modifiers for load (efetchmod, eloadmod) and store (efetchmod, estoremod)

accesses.

The output of the EMI module is an enclave-specific encryption tweak for fetch (f_encl_tweako; routed to

the I Cache controller) and load/store operations (ls_encl_tweako; routed to the D Cache controller). The

enclave tweak for fetch operations matches the effective fetch modifier. On the other hand, the enclave
tweak for load or store operation is computed by combining the effective fetch modifier with the effective
load or store modifier using an XOR operation. The fetch modifiers can only be configured by the trusted
M-mode software, like the Physical Memory Protection (PMP) unit settings, while the other modifiers can
also be written by lower-privileged software. Generating the enclave-specific tweaks according to this
scheme has several advantages:

• By allowing the enclaves to modify their load and store modifiers, they can reconfigure the memory
encryption to access shared memory regions. In such a case, the enclave needs to know the load
and store modifiers of itself and all shared memory regions. 

• The leakage of modifiers stored in a victim enclave does not enable another entity to access its
memory or shared memory regions, as the enclave tweak computation for loads and stores also
includes the effective fetch modifier. The effective fetch modifiers are only known to the trusted M-
mode software and are statistically unique per enclave. Hence, without knowing the effective fetch
modifiers, no load and store modifiers granting access to the victim enclave or its shared memory
regions can be computed.

• The computation of the load and store enclave tweak as a combination of the effective fetch
modifier with the effective load or store modifier also leads to architectural resilience against fault
attacks aiming to skip instructions during context switches:

o Suppose the switching of the load or store modifier is skipped. In that case, the combination
of genuine fetch and previous load or store modifier will not match the needed value for
accessing the memory of the previous enclave. Hence, an attacker can neither leak data
from the prior enclave nor inject controlled modifications.

o The only way to get an enclave tweak suitable for leaking or modifying the previous
enclave's data would be to skip the switching of the fetch and load or store modifier.
However, then the fetch modifier will not match the value required to decrypt the
instructions belonging to the scheduled (attacker) enclave. Hence, the instructions in
memory will be decrypted wrongly, and the execution will likely quickly end in an illegal
instruction fault.

Deliverable D3.1 ISOLDE Page: 42

D3.1 ISOLDE - public 17.05.2024

The final enclave tweak is stored as part of the cache lines7, passed to the memory controller by the cache
subsystem and used by the memory encryption engine to cryptographically isolate the enclaves from each
other. Note that this also implies that the protected memory regions must at least be cache line size aligned.
For more information about the changes to the cache subsystem and the memory encryption engine see
NXP-AT’s IEE module (Section 3.1.1). Figure 3.1.5.4-2 demonstrates the entity isolation provided by
Keystone enhanced with EMI using the same example as in Figure 3.1.5.2-1. For example, considering the
SM, we can see that in addition to the existing logical isolation by the PMP (as shown in Figure 3.1.5.2-1),
the correct encryption tweak must be set for accessing memory regions (e.g., „SM tweak“ for accessing the
memory region associated with the security monitor or „Host tweak“ for accessing the memory region
associated with the host). If the set encryption tweak does not match the one associated with the memory
region, then reads return random content, and controlled writes are not feasible.

Figure 3.1.5.4-2: Entities isolated with Keystone enhanced with EMI.

3.1.5.5 ISA

The EMI module extends the ISA of the base RV32 core. The next sections describe modified and new
design parameters, CSRs, instructions, and exceptions.

Design Parameters

Parameter Default Value Function

EMI_ENABLE 1 Determines if the Enclave Memory
Isolation module is included in the
design.

Table 3.1.5.5-1: EMI module design parameters

CSRs

7 In practice, the cache lines do not need to store the entire tweaks which would result in a large overhead,
but rather would store a compressed version in the cache lines themselves and resolve those compressed
versions via a lookup table before forwarding them to memory. This in turn requires an appropriate
replacement strategy for the tweaks in the lookup table and an invalidation of certain cache lines in case a
tweak is not present in the table.

Deliverable D3.1 ISOLDE Page: 43

D3.1 ISOLDE - public 17.05.2024

In the following table, the privilege column gives the minimum required privilege mode (first letter) to access
the CSR and which access types are allowed (last two letters). For example, M-RW means M-mode has
read and write access, but lower privilege modes have no access.

CSR Index Privilege Bits Function

mloadmod0 TBD8 M-RW 31-0 LSW of load modifier for M-
mode

mstoremod0 TBD8 M-RW 31-0 LSW of store modifier for M-
mode

mfetchmod0 TBD8 M-RW 31-0 LSW of fetch modifier for M-
mode

mloadmod1 TBD8 M-RW 31-0 MSW of load modifier for M-
mode

mstoremod1 TBD8 M-RW 31-0 MSW of store modifier for M-
mode

mfetchmod1 TBD8 M-RW 31-0 MSW of fetch modifier for M-
mode

sloadmod0 TBD8 S-W9 31-0 Alias to
u[load,store,fetch]mod[0,1]

sstoremod0 TBD8 S-W9 31-0

sfetchmod0 TBD8 M-RW 31-0

sloadmod1 TBD8 S-W9 31-0

sstoremod1 TBD8 S-W9 31-0

sfetchmod1 TBD8 M-RW 31-0

uloadmod0 TBD8 U-W9 31-0 LSW of load modifier for U-
mode

ustoremod0 TBD8 S-W U-W9 31-0 LSW of store modifier for U-
mode

ufetchmod0 TBD8 M-RW 31-0 LSW of fetch modifier for U-
mode

uloadmod1 TBD8 S-W U-W9 31-0 MSW of load modifier for U-
mode

8 These indices depend on the free CSR addresses in the processor to which the EMI module should be
added.

9 Those CSRs return zero when they are read in U or S-mode preventing unintended leakage of the
modifiers.

Deliverable D3.1 ISOLDE Page: 44

D3.1 ISOLDE - public 17.05.2024

ustoremod1 TBD8 S-W U-W9 31-0 MSW of store modifier for U-
mode

ufetchmod1 TBD8 M-RW 31-0 MSW of fetch modifier for U-
mode

Table 3.1.5.5-2: CSRs added by the EMI module.

Table 3.1.5.5-2 shows that the S-mode CSRs are only aliases for the corresponding U-mode CSRs in the
proposed design. This aliasing simplifies the design for our envisioned use case of enclaves running in
privilege modes below M. In such a setting, differentiating between S- and U-mode is not required as the
isolation shall be enforced between different enclaves. The advantage of this simplification is a reduced
implementation overhead, as no physical registers for the S-mode CSRs are required. We kept the U-mode
CSRs to allow the workload to switch its load and store modifiers in U-mode, enabling quick access to
shared memory sections. This design choice matches the PMP, which is configured by M-mode software,
and afterward the resulting memory access permissions apply to all privilege levels below M.

3.1.5.6 Debugging Strategy

The RISC-V debug module and NXP-AT’s IEE module must be configured in the right way to enable correct
debug functionality in the presence of the memory encryption engine required for the EMI module. For more
information, see the specification of NXP-AT’s IEE module (Section 3.1.1).

Additionally, if the confidentiality of the enclaves shall be ensured, the devices must disable external
debugging before enclaves are provisioned (can be ensured by an appropriate lifecycle). Otherwise,
debugging can leak any enclave's information as the debug access cannot be limited to specific enclaves
using the standard debug module. If debugging access is still required, either a self-hosted debug
implementation with an agent in the trusted software that can enforce the restriction of access needed or
an adapted debug module is required.

Deliverable D3.1 ISOLDE Page: 45

D3.1 ISOLDE - public 17.05.2024

3.1.6 Forward-Edge Control Flow Integrity (FCFI) – NXP-AT

Part of Task 3.1 Safety & Security Modules.

3.1.6.1 General Information

Systems operating in potentially malicious environments are subject to logical and physical attacks. Fault
injection attacks based on optical, electromagnetic, clock, or voltage glitches are a form of active physical
attacks. These attacks can modify or skip instructions, altering the control flow and bypassing security
checks. Research demonstrated various successful attacks exploiting instruction skips introduced by fault
attacks. Among those are bypassing signature verification to load malicious firmware [Buhren2021] or
skipping the reconfiguration of memory protection units to gain access to protected data [Nashimoto2021].

Note that we cannot share detailed information in this public deliverable as no patent has yet been
filed for the FCFI scheme. Hence, only high-level information is presented, and the other sections
have been removed.

3.1.6.2 Purpose and Scope

The FCFI module ensures the integrity of the instruction stream by calculating a running checksum over
the executed instructions and regularly comparing the current checksum value with pre-computed reference
values. If a mismatch is detected, then a software integrity violation is raised. Hence, the FCFI module
allows the detection of attacks that modify the instruction stream. The FCFI module can also detect
modifications of forward-edge control flow transfers (indirect jumps and calls). However, it cannot protect
backward-edge control flow transfers (function returns). For this purpose, it can be combined with NXP-
AT’s BCFI module (Section 3.1.2).

3.1.6.3 Place in the System

The FCFI module is an ISA extension for RV32 cores without a MMU (microcontrollers) as can be seen in
Figure 3.1.6.3-1.

Figure 3.1.6.3-1: Overview of the FCFI module in the system

3.1.6.4 Sub-Modules

The FCFI module requires a submodule for computing and updating a checksum.

RISC-V Processor

RV32
Core

I Cache D Cache

EMI IEE-RV

BCFI CTM

FCFI

L2 Cache IEE MC Main Memory

AHB

Described Here
Other NXP-AT
Contributions

Deliverable D3.1 ISOLDE Page: 46

D3.1 ISOLDE - public 17.05.2024

3.1.6.5 Debugging Strategy

If the RV32 core is in debug mode, then the FCFI module is suspended to allow executing instructions in
the debug ROM and program buffer without integrity violations. The FCFI module is resumed after leaving
debug mode.

Deliverable D3.1 ISOLDE Page: 47

D3.1 ISOLDE - public 17.05.2024

3.1.7 Memory Subsystem Support for Bytecode VMs – HM

Part of Task 3.1 Safety & Security Modules.

3.1.7.1 General Information

The memory subsystem support for the acceleration of bytecode VMs concerns the data memory path of
the microarchitecture. To map stack-based machines onto RISC-V register machines, hardware-based
stacks offload the stack push and pop operations. Besides that, the integration of memory tagging
operations is under investigation as part of the module.

3.1.7.2 Purpose and Scope

The module accelerates the data memory interaction of the bytecode VM implementation. It accelerates
both interpreter implementations and ahead-of-time compiled code. As stack accesses have a significant
impact on the execution, a hardware-assisted data stack can accelerate the execution of both interpreters
and ahead-of-time compiled code. The subsystem integrates with the main core pipeline and can be
accessed from other accelerators, such as bytecode execution units.

3.1.7.3 Place in the System

Figure 3.1.7.3-1: Memory Subsystem Support for Bytecode VMs – Place in the system (FE = Fetch, CSR = Control
and Status Register Interface, LSU = Load Store Unit, BC = Bytecode Translator)

The module (“Stack”) in Figure 3.1.7.3-1 integrates with the core pipeline primarily via CSR registers. The
prime use case is to load and store the top of the stack via a dedicated CSR. The module has a configurable
size of the hardware stack that contains the top elements. It spills between the hardware stack and the
memory autonomously from the pipeline (ideally without backpressure). The width of the spilling is
configurable usually through the cache block size or through the memory width.

A second port to the stack allows other modules to also interact with the stack. In the case of a hardware-
assisted bytecode execution (dashed), the bytecode generator can pop values from stack and generate
instructions that write back to the module (which requires deep integration into the pipeline).

Deliverable D3.1 ISOLDE Page: 48

D3.1 ISOLDE - public 17.05.2024

3.1.7.4 Block Diagram

Figure 3.1.7.4-1: Memory Subsystem Support for Bytecode VMs – Block diagram

The block diagram 3.1.7.4-1 shows the internal structure of the module. The spill logic and the access logic
are state machines that interface the outside world, the stack itself is a shift register, controlled by both
interfaces.

3.1.7.5 Interfaces

The module has three interfaces.

CSR Interface

There are two CSR registers:

• CSR_BCVM_STACKADDR: The base address of the stack in memory. It is used to configure the stack

address of the currently running module.

• CSR_BCVM_TOP: Push and pop operands from hardware stack.

Data Memory Interface

Access to the data memory interface, which can be multiplexed on the memory interface. An Advanced
eXtensible Interface 4 lite (AXI4lite) interface is supported for convenience.

Core Integration (optional)

The push and pop access can also be done via two simple handshake channels (ready, valid, data).

Deliverable D3.1 ISOLDE Page: 49

D3.1 ISOLDE - public 17.05.2024

3.1.8 Safety-Related Traffic Injector (SafeTI) – BSC

Part of Task 3.1 Safety & Security Modules.

3.1.8.1 General Information

The SafeTI is a flexible and programmable traffic injection hardware module to enable exhaustive timing
verification and validation of powerful Multiprocessor System-on-Chips (MPSoCs) for safety-critical
systems. In particular, BSC’s latest version comes along with an increased number of features and an
improved architecture that have been contributed as part of the work in ISOLDE.

3.1.8.2 Purpose and Scope

SafeTI is designed to inject programmable traffic in on-chip interconnects. SafeTI allows programming
arbitrary traffic patterns where multiple parameters can be configured, such as read/write requests, data
size sent/received, burst length, inter-request delays, repetitions per request, sequence of requests, etc.

Traffic pattern programming is devised to keep the memory footprint low to reduce the internal storage
needed and speed SafeTI programmability up. Moreover, traffic pattern descriptors have been devised,
enabling future extensions.

SafeTI is implemented as a pipelined module to enable high injection rates without unnecessary delays
between consecutive requests.

SafeTI is designed to ease its portability across different communication interfaces like AMBA AHB, AMBA
AXI and others. We provide its realization for an AMBA AHB interface.

SafeTI is integrated in an FPGA-based MPSoC from Frontgrade Gaisler AB, based on RISC-V NOEL-V
cores.

3.1.8.3 Place in the System

The SafeTI is an AMBA AHB and AXI compliant module for traffic injection. It is intended to be connected
to these two types of interfaces, and it is particularly useful if those interfaces have either multiple managers
or are connected to subordinates receiving requests from multiple managers. For instance, its best
placement is as part of the interface connecting the cores and/or accelerators with the shared caches or
memory controllers, as illustrated in the schematic in Figure 3.1.8.3-1. This way, the predefined traffic can
be injected to test a variety of timing and functional behavior controllably.

SafeTI’s programming port is compliant with the AMBA Advanced Peripheral Bus (APB), although it will be
extended to AMBA AXI in the future.

Deliverable D3.1 ISOLDE Page: 50

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.8.3-1: SafeTI - Place in the system

3.1.8.4 Block Diagram

Figure 3.1.8.4-1: SafeTI - Block diagram

The SafeTI has a set of control registers programmed through an APB interface. Those control registers
are the ones allowing to program the descriptor buffer, which stores microprogrammed sequences of traffic
patterns to be injected by the SafeTI into the injection interface (IB in the Figure 3.1.8.4-1), namely an AXI
or AHB interface.

The injection pipeline of the SafeTI works as follows: once the next descriptor is fetched (they are fetched
from the descriptor buffer analogously to instructions from memory in a computing core), it is decoded. A
descriptor pointer indicates the next descriptor to fetch. The iteration counter in the descriptor indicates
whether the next descriptor needs to be fetched next, or whether the current descriptor needs to be used
again (e.g., to inject repeated traffic). Using the information of the decoded descriptor, the traffic injection
stage generates the traffic to inject (read or write, with a given data transaction size, whether in burst mode
or not, etc.). Note that, if the descriptor is a delay descriptor, no traffic is injected until the indicated delay
elapses.

Deliverable D3.1 ISOLDE Page: 51

D3.1 ISOLDE - public 17.05.2024

3.1.8.5 ISA

Figure 3.1.8.5-1: SafeTI as microprogrammed and memory mapped module using its own descriptor format.

The SafeTI is a microprogrammed and memory mapped module using its own descriptor format, which we
illustrate in Figure 3.1.8.5-1.

Each descriptor type features a different word length and field encoding to accommodate the programmable
parameters required by the action to be carried out. However, every descriptor shares the first descriptor
word format specified in the figure, providing a compatibility layer in the descriptor format for lighter
implementation. Changes to the first descriptor word fields are considered in future descriptor type
expansions. Fields size and count could be modified for new descriptor types due to being action specific,

whereas fields like irq_en, type and last are considered immutable, to maintain the compatibility layer.

The size field encodes the number of bytes to access for READ and WRITE descriptor types or the number

of clock cycles needed to wait for the DELAY descriptors. The count field encodes the number of times the

descriptor’s execution must repeat. Thus, the same operation is executed (count + 1) times. The irq_en

bit allows the SafeTI to send an interruption through the APB interface upon descriptor completion. Finally,
the last bit is used to finalize the injection pattern at a specific descriptor completion (which disables the

traffic injector if QUEUE mode is disabled) or restarts the execution from the first descriptor.

Descriptor types READ, WRITE, READ_FIX and WRITE_FIX include a second 32-bit word used as a
starting address where to perform the access operation. Should an invalid address be programmed, the
traffic injector behavior depends on the network response to complete the access with an error (e.g., lack
of permission, non-existing, etc.) and resumes traffic injection.

3.1.8.6 Interfaces

AMBA AHB/AXI interface

The AHB or AXI interface is a manager interface used to inject traffic. It is fully compliant with the
specification of the corresponding protocol. Note that, in general, a SafeTI instance supports only one of
those interfaces and injects traffic accordingly.

AMBA APB interface

Hardware interface

Figure 3.1.8.6-1: SafeTI - Hardware interface

Deliverable D3.1 ISOLDE Page: 52

D3.1 ISOLDE - public 17.05.2024

The AMBA APB subordinate interface is used to program the control registers of the SafeTI, and to store
descriptors in the internal descriptor buffer. An address space of 256 bytes is reserved for the APB interface,
with such addresses being set at integration time.

The APB interface only supports single 32-bit accesses for setting the configuration register (0x00), shown
in Figure 3.1.8.6-1, and descriptor word input feed register (0xFC) for programming the injection pattern.

The SafeTI programming process consists of word by word writing each descriptor, in execution order.
Descriptors to be written are obtained through the APB descriptor feed register stored in the descriptor
buffer, which is part of the FETCH stage. Once the desired injection patterns have been programmed, the
injector may be configured and then initialized.

The reset_sw bit is asserted when a new injection pattern needs to be loaded. The current pattern is wiped

out, and all circuits are reset except those related to transactions in process. This is necessary to allow for
the correct termination of ongoing transactions. On the other hand, the hardware reset puts all circuits in a
default state without exceptions. Yet, note that the hardware reset is a SafeTI signal not visible to the
software layers.

SafeTI module features several interruption flags that are propagated through the APB interface. These
include interruptions raised due to a network error, generated when the injection network answers with an
error, due to an internal error caused by an unsupported encoding, or due to injection pattern completion.
Furthermore, descriptor completion can also trigger an interruption, programmed on the first descriptor word
as explained before.

SafeTI also features an automatically disabling mechanism, which triggers an interruption by asserting the
freeze_irq flag to notify that it has been disabled. SafeTI is disabled by means of a hardware breakpoint

of the traffic pattern execution. The conditions that can trigger the interruption are configured by asserting
the irq_err_net, irq_err_core and irq_prog_compl for network error, SafeTI error, or injection pattern

completion respectively.

SafeTI can be set in QUEUE mode by asserting the queue_mode flag so that the injection pattern execution

loops to the first descriptor after completion. The freeze_irq flag overrides the QUEUE mode, meaning

that upon the right conditions the traffic injector is disabled, even if SafeTI is configured to work in QUEUE
mode.

Software Interface

The control register of the SafeTI, as well as the descriptor word input feed register used for SafeTI
configuration must be modified only by software components with appropriate privileges. To realize this,
the SafeTI registers are mapped in specific physical addresses upon integration in the platform, and the
hypervisor (FENTISS’ XtratuM in the particular case of the SafeTI integration in ISOLDE) is in charge of
managing privileges to allow only specific partitions updating and reading of the SafeTI’s registers.

The preferred configuration consists of allowing only a single partition to modify the SafeTI’s registers,
whereas the other partitions cannot access them. XtratuM guarantees this behavior leveraging the MMU
existing in the NOEL-V cores. This MMU also implements the RISC-V ISA hypervisor extension.

Overall, the XtratuM hypervisor provides memory space isolation for the SafeTI’s registers, hence achieving
freedom from interference, in line with safety standards guidelines for items with integrity requirements.

3.1.8.7 Clocking Strategy

SafeTI is designed to share the same clock signaling used for the injection interface, whose input port is
labeled as clk. The module does not allow yet for different clocking regions between the programming

(APB) and injection (AHB or AXI) interfaces.

Deliverable D3.1 ISOLDE Page: 53

D3.1 ISOLDE - public 17.05.2024

3.1.8.8 Reset Strategy

The SafeTI integrates two reset methods, the hardware active low reset signal through the input port rstn,

and the aforementioned software reset flag reset_sw through the APB programming interface. The

hardware reset completely wipes all data from both SafeTI and injection interface, resetting the module to
a blank state and interrupting any on-going transaction. The software reset clears APB registers, sets
descriptor buffer and stage registers to their initial state, and lets the injection interface operate
independently to complete any on-going transactions.

3.1.8.9 Verification Strategy

The SafeTI verification strategy incorporates a custom testbench for the simulation environment, generating
expected and unexpected communication from the injection interface with adjustable degrees of tolerance
(e.g., answer at different clock cycle). Additionally, SafeTI includes a number of counters (e.g., number of
transactions requested) to provide an increase in observability for debugging on FPGA environment.

Deliverable D3.1 ISOLDE Page: 54

D3.1 ISOLDE - public 17.05.2024

3.1.9 Safety and Security Control Unit – IFX

Part of Task 3.1 Safety & Security Modules.

3.1.9.1 Purpose and Scope

The safety controller shall collect the kind and number of on-chip detected errors, pre-process them, and
trigger follow-up actions. Error detection and follow-up actions are out of scope of the safety controller; the
errors are reported, and follow-up actions are triggered by the safety controller.

3.1.9.2 Place in the System

The safety controller is intended to be SW programmable, thus it shall support a bus interface; at the

moment this is AHB. Further, the safety controller is connected to IP-blocks as shown in Figure 3.1.9.2-1

or blocks onside the IPs’ implementation. Via this connection, detected and corrected errors are reported

separately to the safety controller. Thus, also a corrected and an additionally occurring but not corrected

error can be reported. Further, the Safety Controller is connected to an interrupt mechanism, which is here

an external device.

Figure 3.1.9.2-1: Safety Controller in a SoC

3.1.9.3 Block Diagram

The safety controller is depicted in Figure 3.1.9.3-1. It possesses signal interfaces to wires reporting on
errors. These inputs are pre-processed in two error analyzers. One for not corrected errors (error analyzer)
and one for corrected errors (corrected error analyzer).

Deliverable D3.1 ISOLDE Page: 55

D3.1 ISOLDE - public 17.05.2024

The error analyzer contains channels for each signal wired to the safety controller. The analyzed errors are
forwarded to the action request unit, which manages the action request. All three subcomponents are
controlled via values written in bit fields. They report the status by reading the bitfields.

Figure 3.1.9.3-1: Safety Controller

3.1.9.4 ISA

There are no special instructions planned. In case of tight coupling, the safety control unit may be SW
accessed via CSRs. The address of the CSRs is not defined as this is an unsupported option.

The software-based error actions use interrupt signals. More precise alignments may need to enhance the
CLIC related definitions in the RISC-V specification.

3.1.9.5 Interfaces

The interfaces consist of error detection signals, safety action trigger signals, a bus interface and the
clock/reset interface.

AMBA AHB/ABP Interface

The bus interface is AHB or APB.

Error Detection Signals

Error detection signals are level sensitive. The report is high active. If more than one error shall be reported
at a time, the number of errors is binary encoded in a vector of error detection signals. In both cases a low
value on a single wire or the number zero reports “no-error”.

Safety Action Trigger

The safety action trigger is assumed to be positive edge sensitive. Level and handshake-based signals /
signal pairs are an alternative but are not supported.

Clock / Reset Interface

Deliverable D3.1 ISOLDE Page: 56

D3.1 ISOLDE - public 17.05.2024

The clock is assumed to trigger with rising edge and the reset is assumed to be asynchronous low sensitive.
Further, there should be no clock edge when the reset is active.

Clock and reset are planned as separate signals but may be grouped in an interface.

3.1.9.6 Sub-Modules

The submodules are the error analyzer, which is instantiated twice, the action request unit, and the bus
interface module.

(Corrected) Error Analyzer

Error analyzers count the arriving errors and trigger the action request unit only if a threshold is reached.
Optionally, every error can be forwarded to the action request unit.

The error count, the error threshold and a reset of those values is controlled by bitfields.

Action Request Unit

The action request unit merges error requests and raises error requests to the outside. It also handles the
protocol to the unit(s) that handle the action requests. The action request handler is controlled via bitfields.

Bus Interface Module

The bus interface enables the software by memory mapped IO to access the bitfields in the units.

3.1.9.7 Software based Error Handling

It is intended to use a RISC-V CPU core for handling detected errors. Other solutions are open as well. For
the intended case, action trigger signals from the safety controller are connected to an interrupt controller
or directly the exception unit.

RISC-V Trap Handling

Exceptions and interrupts are crucial concepts in the RISC-V architecture, providing mechanisms to handle
unexpected events or changes in the system’s state. In this section, we will cover what exceptions and
interrupts are, briefly describe how they are handled in RISC-V and discuss how exceptions and interrupts
can be used to ensure system reliability.

Exceptions and interrupts are events altering the normal program execution flow. The first ones are related
to synchronous events, while the second ones are asynchronous. In other words, exceptions are tied to a
specific instruction, while interrupts are not. Illegal instructions, misaligned addresses, and memory access
faults are typical exceptions, while interrupts can be triggered by peripheral devices, timers, and other
cores. The mechanism to handle exceptions and interrupts is called a “trap.” When an exception or interrupt
occurs, the processor takes a “trap” to a predefined location in the memory, known as the “trap handler.”
To increase readability, we’ll from now on use the word “traps” to refer to both exceptions and interrupts.
The trap handler is responsible for saving the current state of the processor, handling the trap, and restoring
the processor state before resuming normal execution.

The following key registers are used to handle traps:

• mcause
Encodes the specific cause of the trap (load access fault, timer interrupt, external interrupt,
etc.) so that the trap handler can take appropriate measures.

• mepc
Stores the address of the instruction that caused the trap for exceptions, and the address of
the instruction that would have been executed next for interrupts. It helps returning to the
regular program execution once the trap has been handled.

Deliverable D3.1 ISOLDE Page: 57

D3.1 ISOLDE - public 17.05.2024

• mtvec
Contains the address of the trap handler where the CPU needs to jump. It is typically written
during the system boot.

• mtval
Holds additional information related to the trap to handle it better. For instance, this value could
be the faulting address in case of a load access fault.

When a trap occurs, the processor saves the current program counter (PC) in the mepc register and sets

the mcause register accordingly. The mtval register is updated if additional information is required. The

processor then jumps to the trap handler address stored in mtvec, processes the trap, and resumes normal

execution by setting the PC to the mepc value.

Some traps are already defined by RISC-V, such as the ones mentioned above. These traps define typical
unexpected behaviors that can happen during the execution of a program and handling them is particularly
important in safety-critical systems. Furthermore, some free space is left to define custom traps and can
therefore be related to on-chip faults detected by various mechanisms (DMR, TMR, ECC, etc.). In
conclusion, traps appear as a robust and flexible mechanism for ensuring system reliability and fault
tolerance. The hardware unit responsible for setting the registers and disrupting the regular execution of
the program is called the “Exception Unit.”

Exception Unit as Safety Controller

As discussed in the previous section, traps are suitable mechanisms for safety-critical applications. Safety
mechanisms can be connected to whether trigger a trap directly or to increment a counter that will trigger a
trap when reaching a predefined value. Self-tests can also be executed inside a dedicated trap handler,
and the Exception Unit will resume the program execution when done. The Exception Unit can therefore
be seen as a Safety Controller. Now that we explained the concept, this part will focus on explaining the
capabilities of our Exception Unit.

The design of the Exception Unit follows a model-driven approach where a single implementation leads to
different configurations, depending on the user inputs. In this regard, each trap can be enabled or disabled
separately, and if a trap requires custom registers, they’ll be added to the design automatically without the
user manually specifying them. The number of privilege levels (from one to three) can also be selected.
The whole Exception Unit architecture will be adapted accordingly, alongside the CPU.

When a trap occurs during the execution of a trap handler, it is called a “nested trap.” Each trap has a
priority associated with it which impacts the Exception Unit behavior in case of nested traps. If the second
trap has a lower priority, it is stacked inside the Exception Unit and will be handled once the current trap
handler finishes. If it has a higher priority, it will disrupt the execution of the current trap handler to execute
its own. In order not to erase the information stored in the registers to handle the first trap, new registers
are created. Since we cannot create an infinite number of registers, there is a limit to the number of nested
interrupts that our design can handle. This limit is set by the user as part of our metamodel.

The mtvec register has two bitfields: mtvec.BASE, where the address of the trap handler is stored, and

mtvec.MODE that defines special behavior for interrupts. Figure 3.1.9.7-1 shows how hardware and software

collaborate to pass control to the correct handler when mtvec.MODE = 0. When a trap is triggered, the

Exception Unit will write to the mcause register and propagate the mtvec.BASE value to the PC. The

program jumps to a general trap handler that will read the cause of the trap and jump to a specific trap
handler accordingly. When mtvec.MODE = 1, exceptions still jump to the address contained in mtvec.BASE

and will ultimately execute a general exception handler that is responsible for jumping to the specific
handler. However, interrupts don’t jump to mtvec.BASE but to a location depending on their code (cause of

the interrupt). At this location, there is directly a jump instruction to the specific handler location without
requiring the software to read mcause, as shown in Figure 3.1.9.7-2. This lowers the latency for handling

interrupts as the core now only needs to perform two jumps (first decided by hardware and second by
software) to execute the specific trap handler. Exceptions are also sped up, as the software in the general
exception handler needs to check fewer values for mcause since the interrupts have been taken away.

Deliverable D3.1 ISOLDE Page: 58

D3.1 ISOLDE - public 17.05.2024

In any case, there is still a latency before executing the trap handler, which could be a problem for safety-
critical applications where the Worst-Case Execution Time (WCET) is of utmost importance. For this
reason, we developed a fast address resolution, as shown in Figure 3.1.9.7-3. Each trap is now associated
with a register. When a trap occurs, the PC is set to the address of the associated register to handle the
specific trap directly, reducing the latency to a minimum. The user can decide not to create a register for a
specific trap. If so, the PC will be set to mtvec.BASE per default when this trap is triggered, and the software

will be responsible for jumping to the specific trap from there. The user can also select a single register to
be associated with multiple traps. This high flexibility makes this Exception Unit suitable for multiple
applications with different requirements.

Figure 3.1.9.7-1: Safety Control - Normal address resolution with mtvec.MODE = 0

Deliverable D3.1 ISOLDE Page: 59

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.9.7-2: Safety Control - Normal address resolution with mtvec.MODE = 1

Deliverable D3.1 ISOLDE Page: 60

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.9.7-3: Safety Control - Fast address resolution

Deliverable D3.1 ISOLDE Page: 61

D3.1 ISOLDE - public 17.05.2024

3.1.10 Safety Island - Interface Definition – UZL

Part of Task 3.1 Safety & Security Modules.

3.1.10.1 General Information

A safety island is in charge of monitoring the Processing System, detecting and managing overall critical
behaviour, and provides a function to execute selected high-criticality software. The safety island detects
safety issues and either flags the issue or, more advanced, also handles the issue. The safety island is
built from several units comprising computing, monitoring, and control.

Externally, the safety island has similar interfaces to those of a processing system, such as those to plug it
to address/data interconnects (e.g., an AMBA AXI interface) as well as to the interrupt controller handling
interrupts of several units. Hence, the Multi-Processor SoC -- where the safety island is deployed -- remains
mostly unchanged, and only minor modifications in some units’ interfaces are required to add safety island
components.

3.1.10.2 Purpose and Scope

In the last two years, there were developments regarding safety island interfacing inside and outside the
ISOLDE projects. For example, BSC’s SafeSU Unit uses the AMBA AXI interface to connect to the
processing system, also OFFIS’ Time Contract Monitoring Co-Processor (TCCP) module references on
BSC’s strategy. ETHZ proposes a System called Carfield, which again makes use of the AMBA AXI
interface and some additional interrupt signals.

During the proposal and starting period of ISOLDE, partners already decided to use the AMBA AXI interface
and focus their development on this interface as a connection between the safety island / safety modules
and the processing system. Based on this development, UZL will refocus and move efforts into the
development of the accelerator system.

3.1.10.3 Place in the System

The safety island consists of different modules that are connected to the processing system as illustrated
in Figure 3.1.10.3-1. There is also an independent system of safe cores, which is independent from the
main processing system.

Figure 3.1.10.3-1: Safety Island block design & MPSoC

Deliverable D3.1 ISOLDE Page: 62

D3.1 ISOLDE - public 17.05.2024

3.1.10.4 Interfaces

Following the partner concepts, the AMBA AXI interface will be used to connect to the processing system.
Furthermore, modules will have certain independent interrupt signals that are handled by the safety islands’
interrupt controller.

3.1.10.5 Reset Strategy

The Safety Island is independent from the processing system. Hence, it will be alive during system’s reset
process. To achieve this behaviour, the reset signal for the processing system must be delayed until the
safety island is ready to operate. This can be realized by either the safety island-controlled reset or by the
reset logic which will be ANDed with the safety island state “running”.

3.1.10.6 Debugging Strategy

When the CVA6 core is in debug-mode, the safety island should be informed analogue, so it is capable of
differentiating between debugging mode and misbehavior.

Deliverable D3.1 ISOLDE Page: 63

D3.1 ISOLDE - public 17.05.2024

3.1.11 Root-of-Trust Unit (RoT) – UNIBO

Part of Task 3.1 Safety & Security Modules.

3.1.11.1 General Information

Silicon Root-of-Trust (RoT) units represent the state-of-the-art in terms of trusted computing and system
integrity, as they establish an isolated silicon region with security features for data and code protection.
They protect memory from tampering and include cryptographic acceleration units and physical
countermeasures (e.g., voltage/temperature monitors) to detect security threats.

3.1.11.2 Purpose and Scope

The Root-of-Trust provided by UNIBO within ISOLDE is based on lowRISC's OpenTitan, the first open-
source RISC-V based RoT design. It includes acceleration units for the Secure Hash Algorithm (SHA)
enabling cryptographic hashing (SHA-256 and SHA-3), message authentication (Hash-based Message
Authentication Code - HMAC, KECCAK Message Authentication Code - KMAC) and symmetric encryption
(Advanced Encryption Standard - AES). UNIBO's RoT is meant to be a ready-to-integrate silicon IP able to
act as a RoT.

3.1.11.3 Place in the System

Figure 3.1.11.3-1: RootOfTrust - Place in the system

As shown in Figure 3.1.11.3-1, UNIBO's RoT is meant to be integrated to a top-level system AXI4 crossbar.

Deliverable D3.1 ISOLDE Page: 64

D3.1 ISOLDE - public 17.05.2024

3.1.11.4 Block Diagram

Figure 3.1.11.4-1: RootOfTrust - Block diagram

Figure 3.1.11.4-1 sketches the architecture of the Root-of-Trust (RoT) unit. The central unit of the RoT is

OpenTitan10; it contains a microcontroller based on the IBEX architecture and is centered on a system
interconnect based on the TileLink Uncached Lightweight (TLUL) variant, along with several crypto
acceleration subsystem, a boot manager, and a source of entropy. OpenTitan is wrapped into TLUL/AXI4
bridges to provide connectivity with the rest of the system.

3.1.11.5 Power Management Strategy

Dynamic clock gating of the internal computing elements depending on the utilization in the executed kernel.

10 https://opentitan.org/documentation/index.html

Deliverable D3.1 ISOLDE Page: 65

D3.1 ISOLDE - public 17.05.2024

3.1.12 Root-of-Trust Unit Design and Interface with RISC-V Host
Processor (TitanCFI) – UNIBO

Part of Task 3.1 Safety & Security Modules.

3.1.12.1 General Information

TitanCFI is a module aimed at extending the CVA6 core with a stage able to filter CFI instructions and
forward them into a private mailbox. It foresees the presence of an instance of the OpenTitan Root-of-Trust
integrated in the System-on-chip. The computational element in the OpenTitan (namely the IBEX processor)
reads the instruction stream and enforces the CFI policy.

3.1.12.2 Purpose and Scope

The proposed module relies on exploiting the OpenTitan RoT, that is already present on the platform to
enable Secure Boot and Remote Attestation, as a CFI co-processor. The motivation behind this choice is
to harness the RV32IMAC Ibex core within OpenTitan to execute custom CFI policies in software. This
approach avoids the area overhead associated with integrating a separate security monitor and maximizes
the utilization of the RoT, which typically remains unused after the platform is initially set up. Moreover, our
solution takes advantage of the security features provided by the RoT, including access to private tamper-
proof storage and cryptography accelerators, to provide additional security guarantees with respect to the
other state-of-the-art (SoA) solutions.

3.1.12.3 Place in the System

The module is composed by a host domain and a RoT domain part. The host domain part is located in the
CVA6 core and is aimed to extract information about the committed instructions. This host domain part is
connected to the RoT domain via a HW mailbox using the System Control and Management Interface
(SCMI) protocol. The RoT domain contains a custom OpenTitan firmware executing the CFI policy.

Deliverable D3.1 ISOLDE Page: 66

D3.1 ISOLDE - public 17.05.2024

3.1.12.4 Block Diagram

Figure 3.1.12.4-1: TitanCFI - Block diagram

We designed the CFI monitor following the scheme in the Figure 3.1.12.4-1. The monitor is software
configurable to extract the wanted instructions. Also, it is possible to configure the instruction monitoring
queue. Having a queue of 1 instruction allows an immediate reaction in case of control-flow diversion
detection. However, this implies an overhead as the CVA6 core will have to wait for the monitor (i.e., the
OpenTitan firmware) to complete the analysis. From the other side, increasing the queue reduces this
overhead at the cost of a postponed reaction. The design trade-off of these solutions will be evaluated
during the project using a set of benchmarks and considering target aerospace applications.

3.1.12.5 Interfaces

The interface between the CFI monitor inside the CVA6 core and OpenTitan exploits a HW mailbox using

the SCMI protocol. OpenTitan is integrated in the SoC and it can access the memory through a custom

bridge between the internal TileLink interconnect and an AXI plug exposed externally. Communications

between the host domain and the RoT are mediated by a SCMI compliant mailbox. The mailbox consists

of a set of general-purpose memory mapped registers meant for data sharing. Additionally, it features two

registers, named Doorbell and Completion, which are meant to send an interrupt to the IBEX security

microcontroller and to the CVA6 host core. CFI metadata extracted from the retired instructions are stored

in a CFI Mailbox, where they can be read from the RoT. The design of the CFI Mailbox is analogous to the

SCMI- like mailbox already present in the reference SoC. We parametrize the general-purpose registers to

be large enough to store the CFI metadata required to represent a single control flow instruction. When a

new metadata is ready to be read, the enhanced CVA6 commit stage sets the doorbell register in order to

trigger an interrupt in the RoT. Unlike a regular SCMI-like mailbox, the completion register is not connected

to the host domain interrupt controller, but directly to the commit stage of the CVA6 core. To indicate that a

previously retired instruction has been checked, the result of the CFI enforcement policy can be read from

the mailbox, signaling that the RoT is ready to read the next commit log.

Deliverable D3.1 ISOLDE Page: 67

D3.1 ISOLDE - public 17.05.2024

3.1.12.6 Clocking Strategy

The CVA6 core extensions which take care of filtering the instructions retired by the core, forwarding them
to the OpenTitan Root-of-Trust, are completely synchronous with the CVA6 core, and they are not expected
to need special treatments with respect to the core pipeline.

At the same time, the CFI Mailbox, which stores the CFI metadata until OpenTitan reads it, is synchronous
with the interconnect where it is mapped.

3.1.12.7 Reset Strategy

The sequential elements present in the CVA6 core extensions, and the CFI mailbox are expected to be
synchronously cleared during reset.

3.1.12.8 Debugging Strategy

When the CVA6 core is in debug mode, none of the instructions retired by the core should be considered
for the sake of Control-Flow Integrity enforcement, and no additional instructions should be logged into the
CFI mailbox.

Deliverable D3.1 ISOLDE Page: 68

D3.1 ISOLDE - public 17.05.2024

3.1.13 High-Performance Cache Analysis – SYSGO

Part of Task 3.1 Safety & Security Modules.

3.1.13.1 General Information

We analyze the high-performance cache provided by CEA in the TRISTAN project for the ISOLDE
demonstrator. The output is a short analysis comparing the CEA cache with the default cache.

3.1.13.2 Purpose and Scope

Advance CVA6 ecosystem by showing usability of advanced caches. Our general focus is on safety and
security, and caching is one important part of this, e.g., concerning future implementation of cache
partitioning.

3.1.13.3 Place in the System

Caches are between CPU and memory and serve to speed up memory access. We expect this to be
relevant in an application setting.

3.1.13.4 Block Diagram

The block diagram of the cache itself has been published by TRISTAN partner CEA, see Figure 3.1.13.4-
1. We use a demonstrator setup where the application runs on the CPU, that takes data from memory via
the cache, see Figure 3.1.13.4-2.

Figure 3.1.13.4-1: High-performance cache block diagram, by CEA [Fuguet 2023]

Deliverable D3.1 ISOLDE Page: 69

D3.1 ISOLDE - public 17.05.2024

Figure 3.1.13.4-2: High-performance cache analysis block diagram

Deliverable D3.1 ISOLDE Page: 70

D3.1 ISOLDE - public 17.05.2024

3.2 Accelerator Infrastructure, Memories, Arithmetic Units,
Interfaces and Virtualization

Task 3.2, M3-M33, Leader: UZL

Task 3.2 focuses on accelerator infrastructure such as arithmetic units and fast memories. The
infrastructure to the core plays an important part in enabling an accelerator's performance. The developed
modules include scratchpad memory (integrated in the Vector-SIMD accelerator developed in Task 3.4), a
floating-point accelerator, as well as floating-point tensor processing units with custom float- and fixed-point
operators. These accelerators are suitable for intense floating-point applications targeting specific trade-
offs between accuracy and performance requirements.

IP
Lead

Beneficiary
Type Domain Dependencies Licensing

FPMIX POLIMI
RISC-V Core
Extension

Arithmetic
Unit

RISC-V core
with F extension

Open source
(bfloat16)
Proprietary
(others)

FPU UZL
RISC-V Core
Extension

Arithmetic
Unit

CVA6 Open source

Scratchpad IMT Core Accelerator None
Restrictive
open source
(GPL-3.0)

Table 3.2-1: Overview of contributions in Task 3.2

https://github.com/openhwgroup/cva6

Deliverable D3.1 ISOLDE Page: 71

D3.1 ISOLDE - public 17.05.2024

3.2.1 FPU for Mixed-Precision Computing (FPMIX) – POLIMI

Part of Task 3.2 Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization.

3.2.1.1 General Information

Customizable floating-point arithmetic unit that can implement operations with various amounts of precision
bits in their floating-point arithmetic formats for the operands and result.

3.2.1.2 Purpose and Scope

The floating-point unit (FPU) is meant to be used in mixed-precision computing scenarios, which can fully
make use of the flexibility in the precision provided by the FPU to achieve different tradeoffs between
accuracy, latency, energy consumption, and area. For example, workloads such as artificial-intelligence
ones in which a loss of accuracy can be accepted, implementing Floating-Point (FP) formats with smaller
precisions can be leveraged to reduce the area occupation and power consumption of computing hardware.
To this end, the formats of FP operations in FPMIX can be configured at design time, also by leveraging
precision tuning approaches such as [Cherubin2020].

3.2.1.3 Place in the System

The FPMIX floating-point unit can be integrated as the functional unit of a RISC-V CPU core replacing
any existing FPU.

FPMIX will be evaluated for the integration in the root of trust of the space demonstrator use case, if
floating-point computations are needed in the root of trust.

3.2.1.4 Block Diagram

Figure 3.2.1.4-1: FPMIX - Block diagram

Deliverable D3.1 ISOLDE Page: 72

D3.1 ISOLDE - public 17.05.2024

The FPU implements floating-point operations whose precision (number of mantissa bits) can be configured
at design time. The precision for each type of operations is independently configurable at design time, i.e.,
different floating-point operations can have different precision, while the dynamic range (number of
exponent bits) is fixed and the same as the widely used IEEE-754 float32 one for all the supported floating-
point formats. In general, each category of operation in the FPU, namely, additions/subtractions,
multiplications, divisions, comparisons, and conversions, can indeed implement a floating-point format with
a different number of mantissa bits ranging between 1 and 23, 8 exponent bits, and 1 sign bit.

For example, the block diagram depicted in Figure 3.2.1.4-1 refers to an FPU configuration with float32
additions/subtractions and bfloat16 multiplications and divisions. The float32 format has a 1-bit sign, an 8-
bit exponent, and a 23-bit mantissa, whereas the bfloat16 one has a 1-bit sign, an 8-bit exponent, and a 7-
bit mantissa.

Values received as inputs and produced as outputs by the FPU are always encoded in the 32-bit float32
representation (in addition to 32-bit integers, in the case of float-integer conversions). Operands to lower-
precision operations are truncated by discarding the corresponding number of least significant bits of the
mantissa, while their results are conversely extended by padding the least significant part of the mantissa
with zeros. Dedicated rounding logic is instantiated for each floating-point format employed by at least an
operation in the FPU.

Instantiating FP operations can reduce the area occupation, power consumption, and latency of the
corresponding hardware logic, improving the energy efficiency of the computing platform. Software
precision tuning techniques can aid in exploring trade-offs that consider the acceptable accuracy loss for
the target workloads.

3.2.1.5 ISA

The FPU implements arithmetic operations corresponding to those defined for the single-precision (float32)
format by the IEEE-754 standard, and it is therefore compatible with the instructions defined by the F single-
precision floating-point extension of the RISC-V ISA.

All the floating-point formats supported by the FPU share indeed the dynamic range of IEEE-754 float32
and have at most the number of mantissa bits of float32.

As mentioned in Section 3.2.1.4, internal conversions to and from smaller-precision formats are performed
by truncation and extension, respectively, thus no additional conversion instructions are required.

Deliverable D3.1 ISOLDE Page: 73

D3.1 ISOLDE - public 17.05.2024

3.2.2 Floating-Point Unit for RISC-V (FPU) – UZL

Part of Task 3.2 Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization.

3.2.2.1 General Information

Floating-Point Units are specialized arithmetic units for calculating floating-point arithmetic. In modern
systems, they are highly integrated into the processor pipeline and support different arithmetic
specifications such as IEEE 754 single precision (32bit) and double precision (64 bit). In addition, further
definitions exist, addressing more specialized applications: for example, bfloat16 is used and supported by
a wide range of Artificial Intelligence (AI) applications.

3.2.2.2 Purpose and Scope

The RISC-V ecosystem is highly adaptable and configurable. It is hence desirable that the RISC-V’s
Floating-Point Unit is configurable and adaptable for different use cases as well. During the current runtime
of the ISOLDE project, UZL researched and tested some of the already existing and Open-Source Floating-
Point Units of the RISC-V ecosystem. One (promising) example is the OpenHW Group’s Floating-Point Unit
CVFPU which is capable of IEEE 754-2008 single-, double-, quad- and half-precision specification. With
the development of a FPU with support for a wide range of floating-point arithmetic and compatible with
different processor systems, UZL intends to focus on integrating selected and domain specific FPUs into
the SoC system, like, for example, for the automotive demonstrator (owned by Continental).

3.2.2.3 Place in the System

The following description is based on the CV32E40P Core of the OpenHW Group but matches most of the
existing FPUs. As shown in the CV32E40P core’s block diagram (Figure 3.2.2.3-1), the FPU (depicted
inside the red box) is integrated into the processor pipeline with direct access to required operands.

Deliverable D3.1 ISOLDE Page: 74

D3.1 ISOLDE - public 17.05.2024

Figure 3.2.2.3-1: Official CV32E40P block diagram including FPU (red box)

3.2.2.4 Block Diagram

The FPU core is interfaced to the RISC-V core. It is integrated to the pipeline of the processor and has
access to the operands. The block diagram is depicted in Section 3.2.2.3.

3.2.2.5 ISA

No ISA modifications are required. Floating Point is already part of the ISA Specification: “F” (Single
Precision), “D” (Double Precision), and “Q” (Quad Precision).

3.2.2.6 Interfaces

The FPU is interfaced into the pipeline with direct access to the Register File for operand access and write
stage.

Deliverable D3.1 ISOLDE Page: 75

D3.1 ISOLDE - public 17.05.2024

3.2.3 Scratchpad – IMT

Part of Task 3.2 Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization.

3.2.3.1 General Information

In memory bound applications, memory accesses may represent an important bottleneck. The memory
receives requests from many components and only can handle them sequentially. For a vector processor,
sequential data access may have performance penalties. One possible solution is to employ multi-bank
memories which employ two techniques: data duplication and data mapping.

Assuming each memory bank allows one memory access per clock cycle, conflict-free parallel access

means that by using N memory modules we can access N distinct data items in each clock cycle, one from

each memory module. If two or more data items are required from the same memory bank, this creates a

conflict, and the accesses will be serialized.

The data duplication technique creates copies of the data stored in a memory module in two or more
memory modules. That allows parallel access to these memory banks, allowing conflict-free parallel access
to data in a simple and straight forward way. The important disadvantage is the hardware cost of duplicating
the memory modules while not increasing the capacity we need to duplicate the memory module. Another
possible disadvantage is related to coherency: writing data may lead to data coherency problems if
synchronization is not handled correctly.

The second technique is data mapping: distributing the data in multiple memory, so it can be accessed in
parallel. When using data mapping, no additional memory modules are needed. However, the challenge is
to optimally distribute data to these memory banks to allow conflict-free access.

Our proposed Scratchpad Memory is based on PolyMem [Ciobanu2018] and uses the Memory Access
Schemes originally used in the Polymorphic Register File [Ciobanu2013], [Kuzmanov2006].

3.2.3.2 Purpose and Scope

A Scratchpad Memory is a personalized mapped memory that guarantees parallel conflict-free access for
a limited selection of access patterns which are known at design time. It may improve performance for
memory bound applications for which the memory access patterns are supported by the Scratchpad
Memory.

Our proposed Scratchpad Memory acts as a fast memory module that allows multi-lane, conflict-free access
to multiple data simultaneously for selected access patterns. Our design supports the following access
patterns: rectangle, row, column, transposed rectangle and main and second diagonal. Depending on the
memory access scheme implemented, our Scratchpad Memory allows conflict-free access to one or more
access patterns.

This Scratchpad Memory is envisioned to have a configurable capacity (e.g., a few MB), and the data
transfers to/from the Scratchpad Memory are managed manually by the programmer.

3.2.3.3 Place in the System

The Scratchpad Memory could be placed in two places in the system: inside a system component or as a
standalone component. If inside the component, the Scratchpad give to user a simple and basic interface
for control and data. As a standalone component, the system has an AXI Lite interface for configuration, an
AXI Memory-Mapped (AXI-MM) interface to access main memory and multiple AXI Stream interface to
send and get data to another component.

Scratchpad Memory in a component

Deliverable D3.1 ISOLDE Page: 76

D3.1 ISOLDE - public 17.05.2024

One use case scenario for Scratchpad is to be used inside an accelerator. The designers could use this
Scratchpad Memory as a buffer, to store some data temporally to finish the job faster while reducing the
communication with the slower main memory. In that scenario, all the control signals are driven by the
accelerator and the Scratchpad handles multiple data items per request. An intuitive diagram is presented
in Figure 3.2.3.3-1.

Figure 3.2.3.3-1: Connecting a Scratchpad Memory to an accelerator.

The default Scratchpad interfaces include control signals and multiple lanes to write and read data from
this memory. Also, the Scratchpad Memory allows multiple parallel reading ports, obtained by duplication
of memory modules. This multi-port feature makes the Scratchpad Memory suitable for an arithmetic
accelerator. The full interfaces are presented in Figure 3.2.3.3-2.

The simple control signals are 2D coordinates for writing and reading, memory organization and the access
type. The access type is one of the six supported: i) rectangle; ii) row; iii) column; iv) main diagonal; v)
second diagonal; and vi) transposed rectangle. There are multiple interfaces to write or read data from
Scratchpad. The number of read/write elements is called the number of lanes and is a parameter set at
design time.

Deliverable D3.1 ISOLDE Page: 77

D3.1 ISOLDE - public 17.05.2024

Figure 3.2.3.3-2: Interfaces for Scratchpad Memory [Ciobanu2013]. The upper side is the basic interface, and the
lower one is the interfaces extended by duplication.

Scratchpad Memory as a component

Another use case scenario is to use the Scratchpad as an independent component. In that way, the user
has a wrapper over read/write operations and may unload the accelerator from some memory related tasks.
The Scratchpad Memory components handle memory access and data synchronization.

The Scratchpad Memory as a standalone component is presented in Figure 3.2.3.3-3. When the
Scratchpad is a standalone component, the control signals are driven by a configuration register bank. This
component is configured by the system via an AXI Lite interface. This configuration includes a memory
interface that is connected to the main AXI interconnect to access the main memory. Furthermore, to allow
high-speed communications with other components, the interfaces are AXI Stream. In that configuration
the Scratchpad is configured from the outside.

With a dedicated configuration interface from the AXI family, both the CPU and the accelerator can
configure the Scratchpad, allowing the user to preload data in the Scratchpad Memory and potentially to
improve performance.

Deliverable D3.1 ISOLDE Page: 78

D3.1 ISOLDE - public 17.05.2024

Figure 3.2.3.3-3: Scratchpad Memory as a component

3.2.3.4 Block Diagram

The main components of the Scratchpad Memory are the memory banks modules and the logic that
computes the addresses for every bank based on the selected Memory Access Scheme. The Memory
Access Schemes supported [Ciobanu2013] are Rectangle Only (ReO) [Kuzmanov2006], Rectangle Row
(ReRo), Rectangle Column (ReCo), Row Column (RoCo) and Rectangle Transposed (ReTr). The
Rectangle Only scheme only supports accessing rectangles. ReRo, ReCo, Roco and ReTr support a
minimum of two access patterns and are called multi-view memory schemes. The ReRo scheme supports
memory accesses shaped as rectangles, rows (multiple elements from the same line), main and secondary
diagonals. ReCo supports rectangles, columns, and main and secondary diagonals. The ReTr scheme
allows access to rectangles and transposed rectangles.

The internal structure of the Scratchpad Memory is presented in Figure 3.2.3.4-1. The Scratchpad Module
receives the start 2D index and the memory access scheme. Based on them, it generates the addresses
for each individual memory bank module. The data is read from the memory banks and finally a Data Shuffle
rearranges the data to be passed to the user.

Deliverable D3.1 ISOLDE Page: 79

D3.1 ISOLDE - public 17.05.2024

Figure 3.2.3.4-1: Internal organization of Scratchpad Memory, based on [Ciobanu2013]

Figure 3.2.3.4-2 illustrates the scenario when the Scratchpad is employed as a standalone component,
then additional modules are required. This standalone Scratchpad has a configuration unit, allowing for the
Scratchpad Memory to be configured. A DMA engine handles communication with the main memory,

Deliverable D3.1 ISOLDE Page: 80

D3.1 ISOLDE - public 17.05.2024

handling data reads and writes to/from the main memory. First-In-First-Out (FIFO) units are used to handle
fast streams of data to other components.

Figure 3.2.3.4-2: Internal architecture for Scratchpad as a component

3.2.3.5 Clocking Strategy

The Scratchpad may be employed in two modes: inside an accelerator or as a standalone component. If
placed inside an accelerator, the Scratchpad requires one clock domain for memory banks. As a standalone
component, the Scratchpad module has two clock domains: one clock domain for the configuration and
memory interface and the second one for the AXI Stream (AXIS) interfaces. The synchronization between
the memory clock domain and the stream interfaces is handled by employing asynchronous FIFOs.

3.2.3.6 Reset Strategy

When the Scratchpad Memory is integrated inside an accelerator it may require a reset signal for the
memory banks. This depends on the target technology, as some Block Rams (BRAMs) have a reset signal
that may be used to clear the memory data.

When the Scratchpad Memory is used as a standalone component and the reset signal is active, then all
the states machines are returned to initial state, all configuration registers return to default values and all
FIFOs are flushed.

Deliverable D3.1 ISOLDE Page: 81

D3.1 ISOLDE - public 17.05.2024

3.3 Monitoring Infrastructure

Task 3.3 M3-M33, Task Leader: POLIMI

Task 3.3 focuses on the development of components and methodologies that provide monitoring support
for multiple purposes, ranging from performance monitoring in a safety-specific context to power and energy
monitoring, via on-line hardware-software monitoring infrastructures that enable therefore the optimization
of the overall system both at design time and at run time.

On the one hand, a multicore statistics unit (BSC) is integrated as part of the safety island, while context-
aware performance monitoring counters are extended with context filtering capabilities to further strengthen
the monitoring of the safety island (TRT) and a configurable and programmable co-processor dedicated to
monitoring time contracts (OFFIS) can observe application-specific hardware and software timing
properties. On the other hand, a dedicated methodology can deliver an on-line power monitoring
infrastructure (POLIMI) while considering the accuracy, area overhead, and side-channel information
leakage metrics as constraints in the power model identification phase.

IP Lead
Beneficiary

Type Dependencies Licensing

CA-PMC-IF TRT Core
CA-PMC, CA-BUS
(WP2)

TBD

RTPM POLIMI Core Monitored IP Proprietary

SafeSU BSC Core None
Permissive open
source (MIT)

TCCP OFFIS Core Safety Island, SafeSU
Permissive open
source
(Apache-2.0)

Table 3.3-1: Overview of contributions in Task 3.3

Deliverable D3.1 ISOLDE Page: 82

D3.1 ISOLDE - public 17.05.2024

3.3.1 Context-Aware PMC Interface (CA-PMC-IF) – TRT

Part of Task 3.3 Monitoring infrastructure.

3.3.1.1 General Information

The Context Aware Monitoring framework is a set of IPs to enhance the monitoring IPs with context
information and standardize the same monitoring IPs deployed in an SoC. The context information is
typically defined by a context controller which typically is a core defining the context in which the events
monitored are issued. The Context Aware Monitoring framework is composed of 4 different IPs (or IP
extensions): the CA-CORE, the CA-BUS, the CA-PMC (Section 3.1.3), and the CA-PMC-IF.

3.3.1.2 Purpose and Scope

The CA-PMC-IF module’s purpose is to provide a means for the system (e.g., main core, supervision core)
to program the CA-PMC module the CA-PMC-IF is associated with and retrieve the counters from the CA-
PMC.

In the context of ISOLDE, we will target the SoC caches as IP integrating the CA-PMC (and CA-PMC-IF to
configure the CA-PMC and retrieve data from the CA-PMC).

3.3.1.3 Place in the System

The CA-PMCs are extended Performance Monitoring Counters to be placed in the different IPs of the
system, as shown in the example in Figure 3.3.1.3-1. The CA-PMC-IF module is the module responsible
for making the CA-PMC visible to the rest of the system.

Figure 3.3.1.3-1: CA-PMC-IF - Place in the system

Deliverable D3.1 ISOLDE Page: 83

D3.1 ISOLDE - public 17.05.2024

In the project's context, the Instruction and Data L1 Caches CA-PMC-IFs will be targeted, but it should be
reusable in other IPs.

3.3.1.4 Block Diagram

The CA-PMC-IF definition is currently being actively discussed and a final architecture is not yet available.
Figure 3.3.1.4-1 (taken from the CA-PMC description) shows a high-level block diagram displaying how the
CA-PMC-IF is connected to the CA-PMC and an AXI bus.

Figure 3.3.1.4-1: CA-PMC-IF - Block diagram

3.3.1.5 Interfaces

The CA-PMC-IF is connected with two different IPs:

• The CA-PMC module, and

• to an AXI bus to which it provides a memory mapped interface.

AXI bus interface

The CA-PMC-IF provides an AXI bus interface, providing a memory mapped access to the CA-PMC
registers the CA-PMC-IF is connected with. Details on the exposed memory map are being defined.

Dedicated interface between CA-PMC-IF and CA-PMC

Register write/read interface controlled by the CA-PMC-IF is required between the CA-PMC-IF and the CA-
PMC. It provides the CA-PMC-IF the capability to read and write the CA-PMC configuration and counter
registers.

Deliverable D3.1 ISOLDE Page: 84

D3.1 ISOLDE - public 17.05.2024

3.3.2 Run-Time Power Monitoring Instrumentation (RTPM) – POLIMI

Part of Task 3.3 Monitoring infrastructure.

3.3.2.1 General Information

The automatic generation of the run-time power monitoring infrastructure delivers periodic power estimates
from the switching activity of a few select signals in the monitored components.

3.3.2.2 Purpose and Scope

The effectiveness of run-time optimization techniques that aim to improve the energy efficiency of a target
computing platform is strongly tied to the quality of the measurements or estimates of power consumption
provided by a run-time power monitoring infrastructure. The latter can perform indirect estimation of the
dynamic power consumption of the target computing platform by analyzing its run-time statistics such as
the switching activity of microarchitectural signals, monitored through dedicated hardware counters.

3.3.2.3 Place in the System

The monitoring infrastructure consists of a set of switching activity counters attached to corresponding
inputs and output signals of the accelerators of which it is required to monitor dynamic power consumption.
The power estimate value obtained by aggregating the counter values is exposed through a hardware
register.

3.3.2.4 Block Diagram

Figure 3.3.2.4-1: RTPM - Block diagram

A run-time power monitoring infrastructure is inserted in a generic RTL design as shown in Figure 3.3.2.4-
1. First, the design’s internal switching activity is correlated to its power consumption. This is done in order
to identify a first-order linear power model.

A selected subset of signals whose switching activity is selected as the input to such identified model is
wrapped with hardware counters that monitor their switching activity. The collected values are periodically
gathered and used to compute an estimate of the power consumption, which is exposed externally to be
usable by a run-time management framework.

The accuracy, the area overhead, and the side-channel information leakage of the monitoring infrastructure
can notably be considered during the model identification phase. This allows to provide not only accurate
estimates but also to satisfy the area and security requirements and constraints of the overall system.

Deliverable D3.1 ISOLDE Page: 85

D3.1 ISOLDE - public 17.05.2024

3.3.3 Safety-Related Statistics Unit (SafeSU) – BSC

Part of Task 3.3 Monitoring infrastructure.

3.3.3.1 General Information

The SafeSU is a modular and scalable Performance Monitor Unit (PMU) that can be connected to any on-
chip interconnect and allows multicore interference observability and controllability.

3.3.3.2 Purpose and Scope

The SafeSU builds on a number of components, namely, the Contention-Cycle Stack (CCS), the Request
Duration Counter (RDC) and the Maximum-Contention Control Unit (MCCU).

• The CCS offers observability features by providing multicore time-interference breakdown.

• The RDC provides end users with an observability channel to monitor high-watermark latencies per
event and core, as needed for interference bounding (e.g., during worst-case execution time
estimation).

• The MCCU offers controllability capabilities with interference quota monitoring and enforcement,
alerting the user when allocated quotas are exceeded.

3.3.3.3 Place in the System

Figure 3.3.3.3-1: SafeSU - Place in the system

The monitoring interface of the SafeSU depicted in Figure 3.3.3.3-1, is AMBA AHB and AXI compliant. The

SafeSU is intended to be connected to those types of interfaces, and it is particularly useful if those

interfaces have either multiple managers or are connected to subordinates receiving requests from multiple

managers. For instance, its best location is normally connected to the interface used by the cores and/or

accelerators to access shared caches or memory controllers so that ongoing traffic can be monitored, and

Deliverable D3.1 ISOLDE Page: 86

D3.1 ISOLDE - public 17.05.2024

eventually compared to predefined quotas to ensure that no manager abuses the use of relevant shared

resources.

SafeSU’s programming port is compliant with AMBA APB, although it will be extended to AMBA AXI in the
future.

3.3.3.4 Block Diagram

Figure 3.3.3.4-1: SafeSU - Block diagram

The main components of the SafeSU are the following:

• Self-test: configures the counters’ inputs to a fixed value bypassing the crossbar and ignoring the
SoC inputs. This mode allows for tests of the software and the unit under known conditions.

• Crossbar: routes any input event to any counter.

• Counters: A group of simple counters with settable initial values and general control register.

• Overflow: Detects counters' overflow. It can raise interrupts upon overflow with its dedicated
interruption vector and per counter interrupt enable.

• Quota: Deprecated as replaced by MCCU (it may be excluded in a future release).

• MCCU (Maximum Contention Control Unit): Contention control measures for each core for the
particular event type that has been programmed to be monitored. It can raise an interrupt if a
contention threshold is exceeded. It accepts real contention signals or estimation through weights.

• RDC (Request Duration Counters): Provides measures of the pulse length of a given input signal
(watermark). It can be used to determine maximum latency and cycles of uninterrupted contentions.
Each of the counters can trigger an interrupt at a user-defined threshold.

3.3.3.5 Interfaces

AMBA AHB/AXI interface

Deliverable D3.1 ISOLDE Page: 87

D3.1 ISOLDE - public 17.05.2024

The AHB or AXI interface is a subordinate interface used to snoop traffic. It is fully compliant with the
specification of the corresponding protocol. Note that, in general, a SafeSU instance supports only one of
those interfaces.

AMBA APB interface

The AMBA APB subordinate interface is used to program the control registers of the SafeSU. The control
registers are as follows:

Main configuration and self-test

Figure 3.3.3.5-1: SafeSU - Base Configuration Register (0x000)

Reset and enable of overflow, quota, and regular counters' operations can be performed with the Base
Configuration Register shown in Figure 3.3.3.5-1. All signals are active high.

Self-test mode allows bypassing the input events from the crossbar and instead using a specific input
pattern where signals are constant. This mode can be used for debugging. After the addition of the crossbar
and debug inputs, there is a certain overlap. The same results can be achieved with the correct crossbar
configuration. Nevertheless, it has been included in this release for compatibility.

These are the self-test modes for each configuration value of the field Selftest mode part of the register

shown in Figure 3.3.3.5-1:

• 0b00: Events depend on the crossbar. Self-test is disabled.

• 0b01: All signals are set to 1.

• 0b10: All signals are set to 0.

• 0b11: Signal 0 is set to 1. The remaining signals are set to 0.

Crossbar

Figure 3.3.3.5-2: SafeSU - Crossbar Configuration Register 0 (0x0AC)

Figure 3.3.3.5-3: SafeSU - Crossbar Configuration Register 1 (0x0B0)

Deliverable D3.1 ISOLDE Page: 88

D3.1 ISOLDE - public 17.05.2024

Figure 3.3.3.5-4: SafeSU - Crossbar Configuration Register 2 (0x0B4)

Figure 3.3.3.5-5: SafeSU - Crossbar Configuration Register 3 (0x0B8)

This feature allows routing any of the input signals of the SafeSU into any of the 24 counters of the SafeSU
(see Table 3.3.3.5-1). Each one of the counters has a 5-bit configuration value. These values are stored in
the registers shown in Figures 3.3.3.5-2, 3.3.3.5-3, 3.3.3.5-4 and 3.3.3.5-5. All the configuration values are
consecutive. Thus, some values may have configuration bits in two consecutive memory addresses.
Examples of this are Output 6, 12, 19 in our current configuration. As a consequence, the previous outputs
may require two writes to configure the desired input signal.

Configuration fields match one to one with the internal counters. So, the field Output 0 matches with

counter 0, Output 1 with counter 1 and so on.

As a usage example, suppose the user wants to route the signal pmu_events(0).icnt(0) to the internal

counter 0. The field Output 0 of the register in Figure 3.3.3.5-2 shall match the index of the signal in the

table of inputs. In this case, the index is 2. After this configuration, the event count will be recorded in
counter 0. The addresses for counter values range between 0x04 and 0x60.

Counters

The unit in the default configuration contains 24 counters, 32-bit each. The memory address where each
counter’s value can be accessed ranges between 0x04 and 0x60, as said before. Counter values can be
read or written, thus allowing to set the initial value of the counters.

Enable and reset are managed by the base configuration register from Figure 3.3.3.5-1.

Counters can overflow. In such a case, the count will wrap around to 0 and keep counting. The next section
(Overflow) describes how to enable the overflow detection interrupts.

Deliverable D3.1 ISOLDE Page: 89

D3.1 ISOLDE - public 17.05.2024

Table 3.3.3.5-1: Crossbar outputs and SafeSU capabilities

Overflow

The user can enable overflow detection for each of the counters in the previous section (Counters). Enables
are active high and individual for each counter, as indicated in the Overflow Interrupt Enable Mask

register depicted in Figure 3.3.3.5-6. If a counter with overflow detection active wraps over the maximum
value, the corresponding bit of the Overflow Interrupt Vector register depicted in Figure 3.3.3.5-7 will

become 1, and AHB interrupt number 6 will become active.

The default AHB interrupt mapping can be modified within the file ahb_wrapper.vhd.

Deliverable D3.1 ISOLDE Page: 90

D3.1 ISOLDE - public 17.05.2024

Figure 3.3.3.5-6: SafeSU - Overflow Interrupt Enable Mask (0x064)

Figure 3.3.3.5-7: SafeSU - Overflow Interrupt Vector (0x068)

Quota

This feature has been replaced by the MCCU and will disappear in future releases. Usage is not
recommended.

MCCU

The MCCU allows monitoring for a subset of the input events and tracking the approximate contention that
they will cause. Currently, events assigned to counters 0 to 7 can be used as inputs of the MCCU. Thanks
to the crossbar, any of the 32 SoC signals can be used by the MCCU.

Figure 3.3.3.5-8 shows the internal elements required to monitor the quota consumption of one core, given
that there are four input events. When the events become active, they pass the value assigned in the weight
register depicted in Figure 3.3.3.5-10 for the given signal to a series of adders. The addition is subtracted
from the corresponding quota register, mapped to addresses 0x088 to 0x094. If the remaining quota is
smaller than the cycle contention, an interrupt is triggered.

Deliverable D3.1 ISOLDE Page: 91

D3.1 ISOLDE - public 17.05.2024

Figure 3.3.3.5-8: SafeSU - Block diagram of the MCCU mechanism for one core

Figure 3.3.3.5-9: SafeSU - MCCU Main Configuration (0x074)

Figure 3.3.3.5-10: SafeSU - MCCU Event Weights Register 0 (shared with RDC; 0x098)

Figure 3.3.3.5-11: SafeSU - MCCU Event Weights Register 1 (shared with RDC; 0x09c)

In the current release, the MCCU can be reset and activated with the respective fields of the MCCU Main
Configuration register depicted in Figure 3.3.3.5-9. The fields labelled as Update Quota Core x are

Deliverable D3.1 ISOLDE Page: 92

D3.1 ISOLDE - public 17.05.2024

used to update the available quota of each core (addresses 0x088 to 0x094). While Update Quota Core
x is high, the content of the corresponding quota register (addresses 0x088 to 0x094) is assigned to the

available quota, as configured in registers 0x078 to 0x084. Once released (low), the available quota can
start to decrease if the MCCU is active. The current quota can be read while the unit is active.

In the current release, each core can monitor two input events. The MCCU module is parametric. More
events can be provided in future releases. Table 3.3.3.5-1 listing the outputs shows the available features
for each crossbar output. Under the column MCCU, you can see towards which core quota the event will
be computed. The unit provides one interrupt for each of the monitored cores. Quota exhaustion for cores
3, 2, 1, and 0 is mapped to AHB interrupts 10, 9, 8, and 7, respectively.

Weights for each monitored event are registered in the MCCU Event Weights Register x registers

depicted in Figures 3.3.3.5-10 and 3.3.3.5-11. Currently, each weight is an 8-bit field. Each input of the
MCCU maps directly to the outputs of the crossbar. Thus, the weight for the MCCU input 0 corresponds to
the signal in crossbar output 0.

RDC

The Request Duration Counter or RDC depicted in Figure 3.3.3.5-12 is comprised of a set of 8-bit counters
and comparators that allow monitoring the length of a CCS signal, recording the number of clock cycles of
the longest pulse and comparing this number with the defined weight.

Figure 3.3.3.5-12: SafeSU - Block diagram of the RDC mechanism

The current release provides monitoring for crossbar outputs 0 to 7. The weights for each signal are shared
with the MCCU and are stored in the RDC Event Weights Register x registers depicted in Figure 3.3.3.5-

14. Weights are 8-bit fields. Counters have overflow protection, preventing the count from wrapping over
the maximum value. The maximum value for each event (watermarks), is stored in the RDC Watermark
Register x registers depicted in Figure 3.3.3.5-15.

The RDC shares the main configuration register with the MCCU (Figure 3.3.3.5-9). Through this register,
the unit can be reset and enabled through the corresponding fields. Such fields are active high signals.

The unit does provide access to the internal interrupt vector (Figure 3.3.3.5-13), but such information is
redundant and may be removed in future releases. Given the current watermarks and assigned weights,
the events responsible for the interrupt can be identified. The RDC interrupt has been routed to AHB
interrupt 11.

Deliverable D3.1 ISOLDE Page: 93

D3.1 ISOLDE - public 17.05.2024

Figure 3.3.3.5-13: SafeSU - RDC Interrupt Vector (0x0A0)

Figure 3.3.3.6-14: SafeSU - RDC Event Weights Registers 0 and 1 (shared with MCCU; 0x098, 0x09C)

Figure 3.3.3.6-15: SafeSU - RDC Watermark Registers 0 and 1 (0x0A4, 0x0A8)

Software interface

The control registers of the SafeSU, as well as the counters by the SafeSU monitoring the events must be
accessed (modified and/or read) only by software components with appropriate privileges. To realize this,
the SafeSU registers are mapped in specific physical addresses upon integration in the platform. The
hypervisor (FENTISS’ XtratuM in the particular case of the SafeSU integration in ISOLDE) is in charge of
managing privileges, allowing only specific partitions to be updated, in accordance with SafeSU’s registers.

The preferred configuration consists of allowing only a single partition to modify SafeSU’s configuration
registers and read SafeSU’s counters, whereas the other partitions would not be allowed to access those
registers. XtratuM guarantees this behavior building on the MMU existing in the NOEL-V cores, which also
realizes the RISC-V ISA hypervisor extension.

Deliverable D3.1 ISOLDE Page: 94

D3.1 ISOLDE - public 17.05.2024

Overall, the XtratuM hypervisor provides space isolation for the SafeSU’s registers, hence achieving
freedom from interference. This is in line with safety standards guidelines for items with integrity
requirements.

3.3.3.6 Clocking Strategy

SafeSU is designed to share the same clock signaling used for the AHB or AXI interface where it is
connected and whose input port is labeled as CLK. The module does not allow for different clocking regions
between the programming (APB) and injection (AHB or AXI) interfaces.

3.3.3.7 Verification Strategy

The SafeSU verification strategy incorporates a custom testbench for the simulation environment,
generating expected and unexpected input data from the observed AHB or AXI interface. Additionally, as
described before, the SafeSU includes a self-test mode that allows to bypass the input events from the
crossbar and instead use a specific input pattern where signals are constant.

Deliverable D3.1 ISOLDE Page: 95

D3.1 ISOLDE - public 17.05.2024

3.3.4 Time Contract Monitoring Co-Processor (TCCP) – OFFIS

Part of Task 3.3 Monitoring infrastructure.

3.3.4.1 General Information

This module is a modular/composable time contract monitoring co-processor in Safety Island. The stand-
alone monitors are developed in VE-VIDES [VE-VIDES], a German funded project but also builds upon
earlier work [Tran2020] developed in EU funded projects, e.g., Productive4.0. This co-processor is
designed to support a formal Contract-Base Design (CBD) language [Sangiovanni-Vincentelli2012].
Furthermore, it must accept the basic timing properties: Aging, Event Occurrence, and Reaction. Finally,
TCCP should be able to monitor different properties simultaneously. The functional and performance
requirements of TCCP are presented in Deliverable D1.2 (Section 3.3.2).

3.3.4.2 Purpose and Scope

TCCP monitors the execution of timing properties received from safety island infrastructure and validates
them based on the given specifications in a contract-based language. This co-processor is used for safety
and security. The result will be presented as violated or not violated as interrupt or Memory-mapped I/O
(MMIO).

3.3.4.3 Place in the System

This module is safety-island co-located. It is not decided yet if this module is connected directly to the
infrastructure of the Safety-Island or will be integrated into the SafeSU unit (Section 3.3.3), developed by
BSC in Task 3.3 “Monitoring Infrastructure”. The idea of integration with SafeSU is to share the observation
modules, such as the RDC developed in SafeSU.

3.3.4.4 Block Diagram

Figure 3.3.4.4-1: TCCP - Block diagram

In Figure 3.3.4.4-1 the abstract schematic of the co-processor is presented. There is an interface to the
safety-island infrastructure inside the co-processor, this could be realized using Trace Ingress Port, for
example. This schematic shows the interaction of the individual components. The interface unit has a buffer
to guarantee the execution of all monitoring requests. The Control unit is responsible for assigning the
correct monitor to each request and load the specifications related to each request into the monitors.

Deliverable D3.1 ISOLDE Page: 96

D3.1 ISOLDE - public 17.05.2024

Monitors (Aging, Event Occurrence, Reaction) are in the compute unit. There is more than one monitor for
each monitoring property to be able to track different requests simultaneously. A local memory is required
for storing and loading the monitoring specifications during the initialization and runtime configuration.

3.3.4.5 Interfaces

OFFIS considers connecting the TCCP to the Safety Island infrastructure interface. At the current stage of
the design, OFFIS considers using the interface(s) used by SafeSU unit (Section 3.3.3) developed by BSC.

3.3.4.6 Verification Strategy

Our verification strategy incorporates custom testbench for the VHDL simulation environment to validate
the functional components in the co-processor. For the system-level debugging, test programs will show
expected timing violations that should be detected by the TCCP.

Deliverable D3.1 ISOLDE Page: 97

D3.1 ISOLDE - public 17.05.2024

3.4 SIMD/Vector, AI Accelerator and Tensor Processor Unit
Design

Task 3.4, M3-M33, Task Leader: FotoNation

The RISC-V architecture is developed with the perspective of extensibility in mind. Adding support for
accelerators enhancing the basic RISC-V instruction set becomes thus straightforward. This task section
gathers the modules designed to accelerate intensive mathematical computation operations. These mainly
include the multiply and accumulate operations performed in matrix operations, with direct application to
neural networks. Here we define the architecture of accelerators that target large-volume numerical
computations like the Tensor Processing Unit (TPU, UNIBO), the Vector Processing Unit (VPU, ETHZ),
Extension Platform (EXP, TUI) and Parallel Computing Accelerator (PCA, POLITO), or optimize the more
specific computations involved by convolutional neural networks – the AI/ML Accelerator (AMA, FotoNation)
and the Event-based CNN Accelerator (ECNNA, SAL). The technical solutions range from loosely coupling
between the accelerator and the host RISC-V, where the integration is performed using AXI and/or AHB
interfaces (AMA and ECNNA), to tightly coupling using the CV-X interface (VPU, PCA), or using both
approaches (in TPU) or approaching a custom coupling (used by EXP). Most of the cores developed
support both 8bit and 16bit floating point representations (in AMA, TPU and VPU), but also variable range
from 8bit to 64bit (for VPU). Almost all of them use some AXI-based memory mapping scheme.

IP
Lead

Beneficiary
Type Dependencies Licensing

AMA FotoNation Core None Proprietary

ECNNA SAL Core None Proprietary

PCA POLITO Core CVA6
Permissive open
source (SHL)

TPU UNIBO Core
CVA6, CV-X-IF, hwpe-
stream, hwpe-ctrl, HCI

Permissive open
source (Apache)

VPU ETHZ Core CVA6, CV-FPU
Permissive open
source (SHL)

Vector-SIMD
Accelerator

IMT Core
CVA6, NOEL-V, CV-X-IF,
Scratchpad

Restrictive open
source (GPL-3.0)

EXP TUI Core
CVA6, CV-X-IF, one or more
AMBA interfaces

Permissive open
source (SHL)

Table 3.4-1: Overview of contributions in Task 3.4

https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/core-v-xif
https://github.com/pulp-platform/hwpe-stream
https://github.com/pulp-platform/hwpe-stream
https://github.com/pulp-platform/hwpe-ctrl
https://github.com/pulp-platform/hci
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cvfpu
https://github.com/openhwgroup/cva6
https://www.gaisler.com/index.php/products/processors/noel-v
https://github.com/openhwgroup/core-v-xif
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/core-v-xif
https://developer.arm.com/Architectures/AMBA

Deliverable D3.1 ISOLDE Page: 98

D3.1 ISOLDE - public 17.05.2024

3.4.1 AI/ML Accelerator (AMA) – FotoNation

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design.

3.4.1.1 General Information

The embracement of artificial intelligence and machine learning based applications is currently on a rising
trend. There is an increasing need to provide capable solutions on diverse scales. Whereas on large scale
AI applications have shown spectacular results, on the small-scale applications are limited by power
consumption and integration area capabilities. Machine learning based applications are typically computing
intensive applications; hence the need to apply machine learning operators to vast volumes of data in an
effective manner.

One solution to this problem is to design power efficient Machine Learning (ML) accelerators. Fortunately,

the ML operators are themselves highly parallelizable, due to the tensor-based nature of the data. Based

on the Open Neural Network eXchange (ONNX) format, neural networks that define what operations and

the order in which they should be applied to the data can be easily defined in a high-level language. It is

then the responsibility of the engineer to come up with optimized hardware able to process those operations

in a highly efficient and timely manner, and to develop a specific compiler that translates the high-level

ONNX description into low-level instructions for this specific hardware.

3.4.1.2 Purpose and Scope

A hardware accelerator designed for computing ML operators should be efficient in both ways: regarding
the power consumed and considering the duration of the processing. In applications such as real-time
sensing, which use camera-based systems to perform image processing on the edge, both aspects are
critical.

The AI/ML accelerator design exploits the inherent parallelism associated with operators typically

encountered in deep convolutional networks. It accelerates operations such as convolution, matrix

multiplication, average pooling and element-wise operations like add or multiply. Due to the parallel nature

of these operations, duplicated circuits working in parallel are employed to generate the results. This is

performed efficiently from both time and power consumption.

3.4.1.3 Place in the System

Figure 3.4.1.3-1 shows the place of the AI/ML accelerator in the system. It can be noticed that all interfaces
are standard AXI4 interfaces, meaning that it can be easily integrated in any system with a standard AXI
interface.

Deliverable D3.1 ISOLDE Page: 99

D3.1 ISOLDE - public 17.05.2024

Figure 3.4.1.3-1: AI-ML - Accelerator block diagram and associated system architecture

The system requirements for integrating the AI/ML Accelerator are:

• AXI4 system bus

• CPU
o Any CPU with AXI bus interfaces.
o The processor is needed to control the accelerator: configure registers, start the

processing, monitor the program running on the accelerator.

• Interrupt Controller
o At least one interrupt line is needed for the accelerator program done interrupt.

• System Memory
o Memory (local SRAM, ROM, external DDR, or flash) is needed for storing the CPU routines,

accelerator program, parameters, and input/output data.

3.4.1.4 Block Diagram

A block diagram of the AI/ML accelerator is also provided in Figure 3.4.1.3-1. It shows all the main
component modules and interfaces. The computing architecture is centered around the Accelerator Core
that processes the operands stored into the Memory Banks. The parallelism is achieved by storing
operands in parallel memories, thus achieving a processing speed in the range of 256 – 2048 multiply–
accumulate (MAC) operations per clock cycle.

The AI/ML Accelerator has the following main features:

• Accelerates most common neural networks layers/operations such as: Convolution, Pooling,
Element Wise Add and Mul, Matrix Multiplication;

• Each supported operation is defined by an instruction. Instructions can be aggregated into complex
programs that describe the computation of complete neural networks;

• Can operate autonomously or close together with an RISC-V CPU;

• Can be used for both Neural Networks inference and training;

Deliverable D3.1 ISOLDE Page: 100

D3.1 ISOLDE - public 17.05.2024

Easy to integrate in any system. All interfaces are standard AXI4 interfaces, 128bit wide.

RISC-V Subsystem Main Features

The RISC-V subsystem jointly works with the accelerator in the following way:

• Configures, starts, and monitors the accelerator module;

• Keeps track of accelerator program execution;

• Provides flow control for complex programs;

• Accesses the accelerator cache to perform operations that are not supported by the accelerator
core;

• Assist in debugging the accelerator;

• Communicates to host processor (the host processor can be in fact the RISC-V processor);

• Provides interface to DDR and flash external memories.

Processing Flow

A typical processing with the AI/ML Accelerator has the following steps:

• Compile the AI/ML model and load the resulting program and parameters in the system memory;

• Prepare the input maps/data in the system memory;

• Power-up the AI/ML power island – if it is not already on;

• Start the AI/ML clock – if it is not already on;

• Configure the AI/ML registers;

• Set the enable configuration bit for the AI/ML Accelerator;

• Configure the Program DMA and start the DMA transfer of the AI/ML accelerator program;

• The AI/ML accelerator starts fetching the program and executes the instructions:

• The Data Read/Write DMA transfers are controlled from the accelerator program;

• The CPU can monitor the progress of the program using optional interrupts and/or status registers;

• The AI/ML Accelerator asserts the “done” interrupt when the program is completed;

• The CPU can post/process or check the results;

• If the idle status bit is set and if the accelerator is not needed again, the AI/ML clock can be gated;

• Once the clock is gated, the AI/ML power island can be powered down.

3.4.1.5 ISA

The instruction set architecture defines the high-level operations supported by the AI/ML accelerator. They
leverage its capability of operating independently of the host processor. As the ISA is still under
development, in the following the supported operations are represented as programming API.

/**
 * Loads a data map from (external – DDR, Flash) system memory into

 * accelerator’s cache (internal) memory

 */
void load(

 void * axi_addr, // system memory address
 uint32_t addr, // cache memory start address

 uint32_t width, // map’s row width (in multiples of bytes
 // given by data format)

 uint32_t height, // map’s number of rows

 uint32_t line_stride, // row stride of the map in system memory
 uint32_t format // data format:

 // 0: FP16, 1: FP8,
 // 2: int8, 3: unit8

);

Deliverable D3.1 ISOLDE Page: 101

D3.1 ISOLDE - public 17.05.2024

/**

 * Transfers a data map from cache (internal) memory to system
 * memory.

 */
void save(

 void * axi_addr, // system memory address
 uint32_t addr, // cache memory start address

 uint32_t width, // map’s row width (in multiples of bytes

 // given by data format)
 uint32_t height, // map’s number of rows

 uint32_t line_stride, // row stride of the map in system memory
 uint32_t format // data format:

 // 0: FP16, 1: FP8

);

/**
 * Applies a 2D convolution on input composed of several channels.

 */
void conv2d(
 uint32_t in_data_addr, // cache memory input map address
 uint32_t weights_addr, // cache memory address for weights
 uint32_t bias_addr, // cache memory address for biases
 uint32_t out_data_addr, // cache memory output map address
 uint32_t in_channels, // number of input channels
 uint32_t out_channels, // number of output channels
 uint32_t data_width, // input map’s row width (in bytes)
 uint32_t data_height, // input map’s number of rows
 uint32_t kern_width, // convolving kernel width
 uint32_t kern_height, // convolving kernel height
 uint32_t in_stride, // row stride of the input map
 uint32_t out_stride, // row stride of the output map
 uint32_t padding // padding added to all four sizes
 // of the input

);

/**
 * Applies a 1D convolution on input composed of several channels.

 */
void conv1d(
 uint32_t in_data_addr, // cache memory input map address
 uint32_t weights_addr, // cache memory address for weights
 uint32_t bias_addr, // cache memory address for biases
 uint32_t out_data_addr, // cache memory output map address
 uint32_t in_channels, // number of input channels
 uint32_t out_channels, // number of output channels
 uint32_t data_width, // input map’s row width (in bytes)
 uint32_t kern_width, // convolving kernel width
 uint32_t in_stride, // row stride of the input map
 uint32_t out_stride, // row stride of the output map
 uint32_t padding // padding added to both sizes
 // of the input

Deliverable D3.1 ISOLDE Page: 102

D3.1 ISOLDE - public 17.05.2024

);

/**

 * Applies a 2D max pooling on input composed of several channels.
 */

void max_pool2d(
 uint32_t in_data_addr, // cache memory input map address
 uint32_t out_data_addr, // cache memory output map address

 uint32_t no_channels, // number of channels
 uint32_t data_width, // input map’s row width (in bytes)
 uint32_t data_height, // input map’s number of rows
 uint32_t kern_width, // kernel width
 uint32_t kern_height, // kernel height
 uint32_t in_stride, // row stride of the input map
 uint32_t out_stride, // row stride of the output map
 uint32_t padding // padding added to both sizes
 // of the input
);

/**
 * Applies an activation function over the input map.
 */
void activation(
 uint32_t in_data_addr, // cache memory input map address
 uint32_t out_data_addr, // cache memory output map address

 uint32_t no_channels, // number of channels
 uint32_t data_width, // input map’s row width (in bytes)
 uint32_t data_height, // input map’s number of rows
 uint32_t in_stride, // row stride of the input map
 uint32_t out_stride, // row stride of the output map
 uint32_t function // activation function type:
 // 0: ReLU, 1: Sigmoid,
 // 2: SiLU, 3: LeakyReLU

);

/**
 * Applies a linear transform to the input data. Both weights size
 * and in_data size equals to no_channels x data_width x data_height.

 * out_data will be a scalar.
 */
void fully_connected(
 uint32_t in_data_addr, // cache memory input map address
 uint32_t out_data_addr, // cache memory output map address
 uint32_t weights_addr, // cache memory address for weights
 uint32_t bias_addr, // cache memory address for biases
 uint32_t no_channels, // number of channels
 uint32_t data_width, // input map’s row width (in bytes)
 uint32_t data_height, // input map’s number of rows
 uint32_t in_stride // row stride of the input map
);

Deliverable D3.1 ISOLDE Page: 103

D3.1 ISOLDE - public 17.05.2024

 /**
 * Applies element-wise addition on input maps.
 */
void eltwise_add(
 uint32_t in1_data_addr, // cache memory map address for input1
 uint32_t in2_data_addr, // cache memory map address for input2
 uint32_t out_data_addr, // cache memory output map address
 uint32_t no_channels, // number of channels
 uint32_t data_width, // input map’s row width (in bytes)
 uint32_t data_height, // input map’s number of rows
 uint32_t in1_stride, // row stride of input 1 map
 uint32_t in2_stride, // row stride of input 2 map
 uint32_t out_stride // row stride of the output map
);

/**
 * Applies element-wise multiplication on input maps.
 */
void eltwise_mul(
 uint32_t in1_data_addr, // cache memory map address for input1
 uint32_t in2_data_addr, // cache memory map address for input2
 uint32_t out_data_addr, // cache memory output map address
 uint32_t no_channels, // number of channels
 uint32_t data_width, // input map’s row width (in bytes)
 uint32_t data_height, // input map’s number of rows
 uint32_t in1_stride, // row stride of input 1 map
 uint32_t in2_stride, // row stride of input 2 map
 uint32_t out_stride // row stride of the output map
);

/**
 * Computes the matrix product of two tensors.
 */
void mat_mul(
 uint32_t in1_data_addr, // cache memory map address for input1
 uint32_t in2_data_addr, // cache memory map address for input2
 uint32_t out_data_addr, // cache memory output map address
 uint32_t in1_width, // input 1 map’s row width (in bytes)
 uint32_t in1_height, // input 1 map’s number of rows
 uint32_t in2_width, // input 2 map’s row width
 uint32_t in1_stride, // row stride of input 1 map
 uint32_t in2_stride, // row stride of input 2 map
 uint32_t out_stride // row stride of the output map

);

3.4.1.6 Interfaces

All interfaces are AXI4. Additionally, at least one interrupt line (program done) is needed for integration.

Two address zones are needed in the system CPU address space:

• Configuration and Status registers;

• Address space for the AXI to Cache bridge.

Deliverable D3.1 ISOLDE Page: 104

D3.1 ISOLDE - public 17.05.2024

The cache data banks store 16 x 16-bit values (also called channels) or 32 x 8-bit values at each address.
The mapping between the cache addresses and the CPU/AXI address space is detailed in Figure 3.4.1.6-
1. Only AXI accesses aligned at addresses multiple of 16 bytes (128-bit) are allowed.

Figure 3.4.1.6-1: AI-ML Accelerator - Address mapping scheme

3.4.1.7 Sub-Modules

AI/ML Sub-modules

The AI/ML Accelerator contains the following main sub-modules:

• Cache:
o Used for both data (activation maps) and parameters (weights);
o Parametrized size;
o Multiple values can be read and written in each clock cycle, ensuring that the accelerator

core is not starved of data.

• Accelerator Core:
o Contains a Configurable Parallel ALU;
o The parallel ALU processes data from the cache and writes the results back to the cache;
o Operates on 8-bit and 16-bit data. Has higher precision accumulators;
o Parametrizable number of MACs: 256, 512, 1024, 2048;
o Can use all available MACs each clock cycle;
o Supported operations:

▪ 1D, 2D Convolution
▪ Pooling
▪ Activation Function
▪ Fully Connected
▪ Element Wise
▪ Matrix Multiplication

o Preprocess / Postprocess modules prepare/arrange the data ensuring that the accelerator
core is not data starved or backpressured: multiplexing, aligning, format conversion.

Deliverable D3.1 ISOLDE Page: 105

D3.1 ISOLDE - public 17.05.2024

• Registers:
o Contains all configuration and status registers;
o Gives the CPU full control of the accelerator core when complex interaction between the

core and the CPU is needed, or for debugging.

• AXI to Cache Bridge
o AXI4 Lite Slave interface;
o Allows the CPU to directly access the cache;
o It has a 128-bit-wide data interface, making it possible to be used by a CPU with Single

Instruction Multiple Data (SIMD) support, providing access to 8 x 16-bit values or 16 x 8-
bit values per clock cycle.

• Program Read DMA:
o AXI4 Master interface;
o Used to read programs, ensuring that the accelerator core is never starved of instructions.

• Flow control
o Decodes the incoming instructions from the Program Read DMA or from the CPU;
o Controls the data flow through the processing pipeline, from cache read, through ALU

processing, to writing back to the cache.

• DMA Read/Write DMA
o AXI4 Master interface;
o Used for high-bandwidth data transfer between the cache and memories in the system

(DDR, Flash, local SRAM);
o Operate at the maximum available AXI bandwidth;
o Used to read and write data (activation maps) and parameters (weights).

CPU Sub-System Sub-Modules

The following modules are required as part of a CPU (RISC-V) subsystem:

• RISC-V CPU
o Controls the RISC-V subsystem and the AL/ML Accelerator;
o Supports floating point operations;
o Support for SIMD processing for efficient processing of data in the accelerator cache;

• Interrupt Controller
o Manages the subsystem interrupts, including the accelerator interrupts;

• SRAM
o Local SRAM for the CPU use and for the accelerator data and program;

• Bridge/mailbox
o Optional modules for connecting and communicating with a host processor.

3.4.1.8 Clocking Strategy

The AI/ML Accelerator has two clock domains. Both clocks can be gated externally when the module is not
in use.

• AI/ML Accelerator clock
o Used by all submodules;
o The clock to each sub-module is gated when the sub-modules are not active;
o The clock to each SRAM of the cache memories is gated anytime when there are no

memory transactions;

• AXI interface clocks
o Only used by the AXI4 interface modules.

Depending on the system/implementation (FPGA, ASIC technology) the two clocks can be asynchronous
or can have the same frequency (in this case no synchronization logic between the two clock domains is
needed).

Deliverable D3.1 ISOLDE Page: 106

D3.1 ISOLDE - public 17.05.2024

3.4.1.9 Reset Strategy

There are two asynchronous reset inputs, active low, one for each clock domains:

• AI/ML Accelerator reset;

• AXI4 reset.

Additionally, software reset / initialization functionality is provided through the configuration registers.

3.4.1.10 Power Management Strategy

Clock Gating

As mentioned above, the clocks to each AI/ML accelerator sub-module and SRAM instance are only active
when the corresponding module/SRAM processes data.

Memory Sleep

Each SRAM instance inside the cache has its own sleep input. The sleep signals are automatically
controlled by the control logic module. Any SRAM that is not needed for the current processing has the
clock gated and is put to sleep.

Power Gating

The whole AI/ML accelerator can be placed on a separate power island. Once a program is completed, the
accelerator power can be switched off as it is always reinitialized every time a new program is executed.

3.4.1.11 Debugging Strategy

The RISC-V processor has standard JTAG interface for in-circuit debugging.

The AI/ML Accelerator provides several ways of debugging its program:

• AXI to Cache Bridge – Provides direct access to all cache values;

• Extra interrupt lines are available and can be used by the CPU to monitor the progress of the AI/ML
Accelerator program;

• Status registers give insight into the status of each AI/ML sub-module;

• Single instructions can be pushed to the AI/ML Accelerator in debug mode, bypassing the program
DMA module.

Deliverable D3.1 ISOLDE Page: 107

D3.1 ISOLDE - public 17.05.2024

3.4.2 CNN Accelerator for an Event-Based Sparse Neural Networks
(ECNNA) – SAL

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design.

3.4.2.1 General Information

Convolutional neural networks (CNNs) have become a standard in computer vision given their capability to
process complex visual data, in contrast to more hand-crafted traditional approaches. They are
characterized by high complexity and require substantial amounts of memory, computing power and
energy, which can be challenging in resource-constrained environments and applications.

One of the promising ways to tackle this is through event-based processing, a paradigm that arouses
inspired by the biological mechanisms that the brain uses to decode signals. This type of processing is
highly sparse in nature, and therefore can be done with a much smaller memory footprint and savings in
computation.

This module is an event-based CNN accelerator capable of exploiting the inherent sparsity present in event-
based data. It supports convolution, maxpool and sparse fully connected.

3.4.2.2 Purpose and Scope

Because of the nature of event-based data, where information is only generated by changes in the visual
scene, our accelerator is particularly suitable for dynamic environments and applications such as
autonomous vehicles.

3.4.2.3 Place in the System

The accelerator has an AHB-Lite subordinate port that writes to a bank of configuration registers that set
the following parameters:

• Stride: supports only power of 2 values.

• Padding.

• Kernel size: maximum allowed size of 7x7

• Activation functions: ReLU, and Leaky ReLU

• Quantized precision: 8bits

It can work either coupled with a DMA, or with the CPU that writes the data in and out from the accelerator
through routines triggered by interruptions.

Deliverable D3.1 ISOLDE Page: 108

D3.1 ISOLDE - public 17.05.2024

3.4.2.4 Block Diagram

Figure 3.4.2.4-1: Event-Based CNN Accelerator - Block diagram

The block diagram in Figure 3.4.2.4-1 illustrates a proposed system integration for the accelerator, modeled
after an Application-Specific Integrated Circuit (ASIC) recently fabricated using 65nm TSMC technology.
The system features a CV32E40P RISC-V CPU (in the diagram replaced by the CVA6) connected via a
64bits AHB-Lite Bus. This CPU commands the accelerator, which processes inputs from two peripheral
devices: an Address Event Representation (AER2AHB) block for native interfacing with a Dynamic Vision
Sensor (DVS) camera, and a Serial Peripheral Interface (SPI) slave block (SPI2AHB) that can receive
events from an FPGA or another microcontroller.

The system was integrated with five 16KiB SRAM memories. Two of these are allocated for data storage,
one for storing weights, another for the program code, and the final one for holding the CNN layer
configurations accessed by the CPU. Also, the system includes a DMA that, with a multi-QSPI peripheral
(consisting of eight QSPI master operated in parallel under a shared controller), enables high-speed data
transfers up to 1.6Gbps. Peripheral interfaces also include a 32-bit General-Purpose Input/Output (GPIO),
and two timers connected to an APB bus, which facilitate events integration and timestamping tasks.

3.4.2.5 Debugging Strategy

The ASIC version counts with an SPI peripheral to AHB-Lite master peripheral (SPI2AHB in the block
diagram) that works as a debugger. For the FPGA implementation, any debugging strategy can be used
where an AHB-Lite controller port can be reached. Additionally, the accelerator counts with multiple
interruption lines that can trigger the CPU after each processing step.

Deliverable D3.1 ISOLDE Page: 109

D3.1 ISOLDE - public 17.05.2024

3.4.3 Parallel Computing Accelerator (PCA) – POLITO

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design.

3.4.3.1 General Information

The parallel computing accelerator is a loosely coupled processing cluster architecture, which can operate
with approximate arithmetic units also supporting on-line change of the approximation level.

3.4.3.2 Purpose and Scope

In the last years AI and ML have gained a lot of popularity in different fields ranging from automotive, to
aerospace, speech recognition, image, and video processing, thus enabling to possibilities and challenges.
However, most of the computing schemes and algorithms employed in AI and ML have noteworthy
computational complexity, which can be difficult to manage in software. As a result, hardware accelerators
are an interesting and viable solution to such a problem.

From another perspective, most of the applications which take advantage of AI and ML exhibit intrinsic
resilience to arithmetic errors. For this reason, the approximate computing paradigm can be exploited to
implement approximate arithmetic operators that introduce errors in the computed values with negligible
performance loss in terms of accuracy.

A loosely coupled accelerator, based on an approximate processing cluster architecture, offers the
possibility to accelerate the computation in an approximate computing fashion. This is achieved by relying
on a set of processing engines working concurrently.

3.4.3.3 Place in the System

The approximate computing cluster is loosely coupled to the CVA6 system CPU via the system-level
crossbar. Additional AXI ports are used to access the system memory through an internal DMA unit.

Figure 3.4.3.3-1: Parallel Computing Accelerator - Place in the system

Deliverable D3.1 ISOLDE Page: 110

D3.1 ISOLDE - public 17.05.2024

3.4.3.4 Block Diagram

Figure 3.4.3.4-1: Parallel Computing Accelerator - Block diagram

As shown in Figure 3.4.3.4-1, the proposed parallel computing accelerator relies on an approximate
processing cluster architecture. The cluster is made of a programmable number of approximate processing
elements, each of which contains a register file and an ALU. The accelerator can be configured via different
parameters. Part of these parameters (such as the maximum number of processing elements and the
maximum precision) are configured at design time, while other parameters (such as the approximation
level) can be set at the run-time by writing configuration registers. These registers’ content triggers proper
masking mechanisms to change the approximation level during the computation to save power. The
accelerator is connected to the CVA6 system architecture through an AXI interface, and it processes a
subset of ALU operations in approximate mode.

Deliverable D3.1 ISOLDE Page: 111

D3.1 ISOLDE - public 17.05.2024

3.4.4 Tensor Processing Unit (TPU) – UNIBO

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design.

3.4.4.1 General Information

A Tensor Processing Unit (TPU) speeds-up FP matrix-matrix, matrix-vector, and vector-matrix operations
through a simplified programming interface, providing memory-mapped configuration registers that can also
be accessed through an eXtension Interface (XIF), supporting 8-bit and 16-bit precision.

3.4.4.2 Purpose and Scope

A hardware TPU for matrix multiplication in the space domain offers significant advantages over
programmable multicore accelerators in terms of both performance and energy efficiency. The primary
reason for this superiority lies in the specialized nature of TPUs, which are explicitly designed to handle the
operations fundamental to all Deep Learning and Machine Learning models, such as high-throughput matrix
multiplications and additions.

TPUs use arrays of arithmetic units specifically optimized for tensor operations, enabling the execution of
thousands of operations in parallel to achieve higher throughput and lower latency in matrix multiplication
tasks. In contrast, programmable multicore accelerators, while versatile, are not specifically optimized for
such operations, leading to less efficient execution of high-volume matrix multiplications due to their more
generalized processing cores.

TPUs also provide high energy efficiency. Their specialized hardware is designed to maximize operations
per watt of power consumed, a critical consideration in space applications where power availability is
limited. TPUs achieve this efficiency through optimizations such as reduced precision arithmetic, which is
suitable for neural network computations and significantly reduces power consumption with reduced
accuracy loss. Programmable multicore accelerators, on the other hand, tend to consume more power for
equivalent tensor operations because they lack these specialized optimizations and often operate at higher
precision than necessary for the task.

Deliverable D3.1 ISOLDE Page: 112

D3.1 ISOLDE - public 17.05.2024

3.4.4.3 Place in the System

Figure 3.4.4.3-1: Tensor Processing Unit - Place in the system

The TPU is localized inside of a tensor processing cluster together with a DMA controller, RISC-V, and
scratchpad memory. This is shown in Figure 3.4.4.3-1. Figure 3.4.4.3-2 shows two different mechanisms
under exploration to control the TPU. In the leftmost option, the TPU is controlled by means of a hwpe-ctrl

target11 exposing a set of memory-mapped registers. In the rightmost option, the TPU is controlled by
means of direct communication between the processing core's register file and a set of registers in the TPU

via an instruction-set extension realized using the CORE-V XIF interface12.

11 https://github.com/pulp-platform/hwpe-ctrl

12 https://github.com/openhwgroup/core-v-xif

Deliverable D3.1 ISOLDE Page: 113

D3.1 ISOLDE - public 17.05.2024

Figure 3.4.4.3-2: Tensor Processing Unit - Controlling

3.4.4.4 Block Diagram

Figure 3.4.4.4-1: Tensor Processing Unit - Block diagram

Figure 3.4.4.4-1 details the internal architecture of the Tensor Processing Unit. The data path is constituted
of a series of Computing Elements (CEs) in a systolic array configuration. The default array size is L=12
rows x H=4 columns. Each CE contains a 16-bit floating point fused-multiply-add (FMA) unit and P=4
pipeline stages. The systolic array is fed by one stationary input (X) and one non-stationary input (W)
broadcasted along the column direction. Both are streamed through a high-bandwidth streamer using the

Heterogeneous Cluster Interconnect (HCI) protocol13. The output buffer (Z) can also be preloaded with
existing content (Y) to implement a complete General Matrix Multiply (GEMM) functionality.

13 https://github.com/pulp-platform/hci

Deliverable D3.1 ISOLDE Page: 114

D3.1 ISOLDE - public 17.05.2024

3.4.4.5 Power Management Strategy

Dynamic clock gating of the internal computing elements depending on the utilization in the executed kernel.

Deliverable D3.1 ISOLDE Page: 115

D3.1 ISOLDE - public 17.05.2024

3.4.5 Vector Processing Unit (VPU) – ETHZ

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design.

3.4.5.1 General Information

The RISC-V vector accelerator with multi-precision capabilities is a tightly coupled accelerator designed to
work in tandem with the CVA6 Application-Class RISC-V core to accelerate parallel workloads with support
for multiple data formats.

3.4.5.2 Purpose and Scope

In an era dominated by data, the demand for computational power has skyrocketed, particularly in ML and
signal processing. These domains are characterized by their intensive computational requirements, often
necessitating the manipulation and analysis of vast datasets to derive meaningful insights. A pivotal
challenge in these areas is the efficient handling of multi-precision data formats, which vary in precision
and are critical for optimizing performance and accuracy in computational tasks. Addressing this challenge
requires innovative hardware solutions capable of accelerating these workloads while maintaining flexibility
in data precision.

To effectively tackle these challenges, we design a RISC-V vector processor with multi-precision
capabilities, following the RISC-V V 1.0 specifications. This processor aims to enhance the computational
efficiency of ML and signal processing applications by offering tailored support for multi-precision data
formats. By leveraging the RISC-V architecture, known for its simplicity, modularity, and extensibility, this
project endeavors to introduce a versatile solution that can address the evolving demands of these
computationally intensive fields.

The vector accelerator will be able to accelerate parallelizable workloads from various domains (ML, signal
processing, linear algebra, etc.) and support multiple integer and floating-point data formats from 64 bits
down to 8 bits. The vector accelerator targets higher performance and efficiency if compared to the scalar-
only computation of the same task, as a single vector instruction triggers the computation of multiple
elements in parallel, amortizing the instruction fetching-decode-issue cost more effectively than its scalar-
only counterpart. To maximize performance, our vector accelerator exploits lane-parallelism and packed-
SIMD parallelism.

3.4.5.3 Place in the System

Figure 3.4.5.3-1: Vector Processing Unit - Place in the system

Deliverable D3.1 ISOLDE Page: 116

D3.1 ISOLDE - public 17.05.2024

The system architecture is described in Figure 3.4.5.3-1. The vector accelerator is tightly coupled to CVA6
with a custom or XIF-inspired [OpenHWGroup2021] interface and communicates via AXI with the Memory.
CVA6 is the RISC-V core and dispatches all the RISC-V vector instructions to the vector accelerator.

3.4.5.4 Block Diagram

Figure 3.4.5.4-1: Vector Processing Unit - Block diagram

The architectural diagram in Figure 3.4.5.4-1 refers to an implementation that supports a custom interface
between CVA6 and the vector accelerator (Ara2 in the schematic).

The vector accelerator is composed of parallel lanes (L0 -> L(n-1)) that contain chunks of the Vector
Register File (VRF), the internal buffer for vector elements. Each lane also contains a vector ALU and a
vector Multiplier and Floating-Point Unit (VMFPU).

The vector accelerator comprises vector CSRs as specified by the RISC-V V 1.0 specifications, a decoder,
a sequencer to account for dependencies between instructions, a private vector load-store unit (AXI-
compliant), a slide unit (SLDU) to handle vector permutations and shuffles, and a mask unit, to work with
1-bit-granular mask vector, which implement predicated execution.

The architecture bus is 64-bit * #Lanes, while the memory data bus is 32-bit * #Lanes.

3.4.5.5 ISA

The vector accelerator is based on RISC-V V 1.0 [RVI2021].

Deliverable D3.1 ISOLDE Page: 117

D3.1 ISOLDE - public 17.05.2024

3.4.5.6 Interfaces

The architecture communicates with the memory through AXI protocol, and with a custom accelerator
interface or XIF-inspired interface with the CVA6 scalar core.

3.4.5.7 Sub-Modules

The vector accelerator cannot fetch instructions from memory; therefore, it needs a scalar core that can
dispatch them. Moreover, it internally uses the CVFPU to process floating-point data.

CVA6

CVA6 [OpenHWGroup2024] is a RV64GC Application-Class scalar that, via a custom or XIF interface, can
dispatch instructions to a tightly coupled accelerator.

CVFPU

CVFPU [OpenHWGroup2023] is the floating-point unit used within the architecture, currently maintained by
OpenHW Group.

3.4.5.8 Reset Strategy

The module is reset with an active-low reset shared by all the architecture modules. All the internal
sequential status is reset, except for the internal vector register file, which is implemented with SRAM banks.

Deliverable D3.1 ISOLDE Page: 118

D3.1 ISOLDE - public 17.05.2024

3.4.6 Vector-SIMD Accelerator – IMT

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design.

3.4.6.1 General Information

SIMD is a processor able to process multiple data elements in parallel with a single instruction. A classical
processor can process a single data element per instruction. The SIMD accelerator exploits available data
level parallelism and may improve performance. The SIMD processor may also reduce the size of the
program code as fewer instructions are needed to process the data. However, vector processors need to
define the vector size, load data, compute them and write back. On scalar processors, work is performed
on one element at the time and overhead instructions to perform index computation and looping are
required.

The SIMD processors are also called vector processors and, like scalar processors, have a register file. In
a vector register the user can store multiple data elements. Some common dimensions for this kind of
register are 128 bits, 256 bits or 512 bits. These registers may also allow narrow data types for subword
level parallelism. For example, if you have a vector register of 128 bits, you can store four integer numbers
of 32 bits, or 16 8 bits integers.

A vector register typically stores multiple elements in it. For a vector processor, for each vector lane there
exists an arithmetic unit allowing parallel processing.

Common applications for vector processors are operations like addition, subtraction, multiplication, and
addition of all vector elements. Other applications are matrix operations like matrix addition (usually handled
like the vector addition), matrix multiplication and convolution – operations that are very common in AI.

This vector processor requires understanding of the hardware platform, the algorithm and the parallelization
of the data. At the design stage, the programmer needs to be aware of the dimensions of the vector
registers; these limit how much data can be loaded into the register and processed in parallel.

The use of vector registers may imply a lot of changes in source code, and sometimes data organization in
memory needs to be changed.

3.4.6.2 Purpose and Scope

Canonical vector processors help improve the speed; they have been proved to have great computation
capabilities. There are still some limitations, e.g., the registers' fixed dimension and their small storage size.
As a result, the conversion of the source code from a scalar CPU to a vector one requires some changes.
Also, the traditional vector processors lack support for 2D vectors.

We propose an accelerator for matrix operations, with applications in AI. The accelerator is tightlycoupled
to the CPU, and the new instructions will simplify coding and improve programming experience.

Our SIMD/Vector Accelerator supports operations such as matrix addition, subtraction, multiplication,
element-by-element multiplication, element-by-element division and convolution. The accelerator features
a reconfigurable register file and a simple programming interface. The user only specifies the operation and
operands. The 2D vector accelerator can operate with a large set of data types, from different sized integer
representations to floating point ones.

3.4.6.3 Place in the System

We want to place the accelerator very close to the core to achieve high speed communication. The
accelerator is tightly coupled with the core and features a dedicated memory interface, see Figure 3.4.6.3-
1.

Deliverable D3.1 ISOLDE Page: 119

D3.1 ISOLDE - public 17.05.2024

The accelerator-core interface is the CoreV eXtension Interface (CV-X-IF). This interface allows us to
extend RISC-V ISA and enable access to core registers.

Figure 3.4.6.3-1: Vector-SIMD Accelerator - Place in the system

Because memory bandwidth may represent bottleneck for memory bound applications, a dedicated
memory interface will be added to the vector accelerator. This interface relieves the main core from memory
operation and allows the accelerator to work independently. Because the most popular interfaces in SoCs
are from the AMBA family, the memory interface is an AXI-MM. The accelerator and the core use the same
address space; both memory interfaces use the same interconnect.

3.4.6.4 Block Diagram

The internal architecture is presented in Figure 3.4.6.4-1. The main components of the accelerator are the
Control Unit, the Register File and the Arithmetic Unit.

Deliverable D3.1 ISOLDE Page: 120

D3.1 ISOLDE - public 17.05.2024

Figure 3.4.6.4-1: Vector-SIMD Accelerator - Internal architecture

The most important component is the Control Unit. This component gets instructions from the scalar CPU
core and exchanges data using the core registers. An important feature for our SIMD/vector accelerator is
the software defined 2D vector registers. Based on the operand and their sizes, the fastest track for the
vector operation is decided.

The Register File is based on the Polymorphic Register File (PRF) and PolyMem [Ciobanu2013,
Ciobanu2018], which represent the base for the IMT Scratchpad memory described in Section 3.2.3. The
Register File Organization Table (RFOG) stores the defined registers, their size, data type and base
address. This component has a dedicated connection to the main memory, to get the highest bandwidth
for main memory related operations. The Register File communicates with the Arithmetic Unit via three data
streams: two of them feed the input operands and the other one gets back the results. All streams have
multiple lanes and send data in parallel.

Figure 3.4.6.4-2 presents an example of a software defined register table and data in memory. On the right
side of the figure is presented the Register File organization table. It stores the specification of every
register: width, height, start position, data type and whether the register is defined. On the left side there is
a visual representation of that register.

Deliverable D3.1 ISOLDE Page: 121

D3.1 ISOLDE - public 17.05.2024

Figure 3.4.6.4-2: Vector-SIMD Accelerator - Example of software defined register in register file, based on
[Ciobanu2013].

The Arithmetic Unit gets the data from the Register File, computes it and sends the results back. The data
type is versatile and can operate with a large set of data types: integer and floating point on different bit
lengths. The Arithmetic Unit has two types of circuits, one Array Arithmetic Unit for fast convolution and
matrix multiplication, and another Vector Arithmetic Units, parallel arithmetic units for addition, subtraction
and cross product.

3.4.6.5 ISA

The CV-X-IF interface sends only the invalid opcodes to the decoder. From the perspective of the main
core this means that this custom instruction needs to have the seven less significant bits storing the opcode.
Also, to gain access to core registers, custom instructions are required to strictly follow RISC-V instruction
encoding. The source registers, rs1 and rs2 need to be in specific locations.

The RISC-V ISA was designed to be extended with custom opcodes, and for that purpose a dedicated
range of opcodes for ISA extension is available. For convenience we chose the first value from that interval.
For our accelerator the opcode value is configurable. After many iterations we managed to use only one
opcode, and with the funct3 field (see RISC-V base instruction formats) we identified the instruction format

and the meaning of it. Because we use only one opcode, that also is configurable, it means that this
accelerator is suitable to integrate with other accelerators that use CV-X-IF.

The ISA includes instructions to define 2D register, their sizes, data type and their base address,
instructions to load and store data from register file, support for masking mode, synchronization instruction,

Deliverable D3.1 ISOLDE Page: 122

D3.1 ISOLDE - public 17.05.2024

sectioning instructions and algebraic instructions. Accelerators allow vector-vector and vector-scalar
operations. The supported operations are addition, subtraction, multiplication, element-by-element division,
element-by-element multiplication and convolution.

Table 3.4.6.5-1 presents the instructions, their RISC-V encoding type, source of the registers and data for
supplementary field (funct3 and funct7). The v2ddef instruction defines a 2D vector, get width and height

from core register, and on func7 store the data type. There are two instructions for main memory access

that have the same format as load and store in RISC-V ISA. The most important instruction types are .vv

and .vs. These instructions handle mathematics operations and the difference between those two

instructions is the .vv type works with two 2D vector and another one (.vs) works with one 2D vector and

one scalar accessed from the scalar core register file. To fully define a register, three instructions are
required: one to define register dimensions (v2ddef), one to define data type (v2dtype) and the last one

to define base address (v2dbase). A dedicated instruction allows 2D register copy, the v2dmov2d instruction.

There is also an instruction to support sectioning (v2dsetvl). Accelerators could work in masking mode;

two instructions enable or disable this function (maskon, maskoff). To populate the masking array, two 2D

accelerators registers can be compared element-by-element, or a 2D register can be filled with a scalar
value. Our accelerator works in asynchronous mode, and with a dedicated instruction the user can
synchronize the main core with the accelerator.

Detailed information about instructions is provided in Table 3.4.6.5-3. The arithmetic instructions are of type
R and on funct7 field stores the operation type. All supported operation and their encoding are provided

in Table 3.4.6.5-2.

Mnemonic Type Opcode rs1 place rs2 place rd place funct3 funct7

v2ddef R 0001011 core core acc 000 -

v2dtype I 0001011 core - - 001 -

v2dsetvl R 0001011 acc acc - 111 -

v2dmov2d I 0001011 acc - acc 010 -

accsetl.r I 0001011 core - - 100

accsetl.i I 0001011 core - - 101 -

v2dsgt.vv R 0001011 acc acc - 011 -

v2dsgt.vs R 0001011 core acc - 110 -

v2dbase I 0001100 core - acc 000 -

v2dld I 0001100 core - - 001 -

v2dst I 0001100 core - - 010 -

*.vv R 0001101 acc acc acc 000 See Table
3.4.6.5-2

*.vs R 0001101 core acc acc 111 See Table
3.4.6.5-2

sync I 0001110 - - - 000 -

maskon I 0001110 - - - 011 -

maskoff I 0001110 - - - 010 -

Table 3.4.6.5-1: Vector-SIMD Accelerator - Main instruction format and operand sources

Deliverable D3.1 ISOLDE Page: 123

D3.1 ISOLDE - public 17.05.2024

Instruction
name

Operation funct7 Comment

vadd2d A+B 0000001

vsub2d A-B 0000010

vcnv2d Convolution 0000100 rs2 as kernel matrix

vdiv2d A/B 0001000 Element by element

vmul2d A*B 0100000 Matrix multiplication

vsmul2d A*B 1100000 Cross product, element by element multiplication

Table 3.4.6.5-2: Vector-SIMD Accelerator - Operations list

Mnemonic Name Description

v2ddef Vectors define This instruction defines a vector register, the output is a vector in
accelerator. As input get width and height, from the core registers in
rs1 and rs2. In the funct7 field is encoded the data type.

v2dld Vector load This instruction loads data from the main memory in the register file.
The format is the RISC-V one. The start address in main memory is
rs1 + immediate.

v2dst Vector store This instruction stores data from the register file in main memory. The
format is the RISC-V one. The destination address in main memory
is rs1 + immediate.

*.vv Vector-vector op This instruction takes three accelerator registers, two as source and
one as result. The supported matrix operations are addition,
subtraction, multiplication (matrix-matrix and element-by-element),
division (element-by-element) and convolution

*.vs Vector-scalar op This instruction takes two vectors register and one core register, one
vector register is the destination one and the other one is source for
operation with scalar. The supported operations are addition,
subtraction, multiplication and division.

v2dtype Set data type If data in rs1 is 0, then all register gets the same data type, else only

the rd register get that type.

v2dsetvl Set 2D vector
length

This instruction is for sectioning. The rs1 register is for X direction

and rs2 instruction is for Y direction.

v2dmov2d Move 2D vector
data

Copy register data from one to another. rs1 is source register, rd is

destination register

accsetl.r Set number of
lanes

Set number of lanes, data from register, rs1 store this data.

accsetl.i Set number of
lanes by
immediate

Set number of lanes, by immediate data.

v2dsgt.vv Set greater than Set 1 in masking array if rs1 < rs2. rs1 and rs2 are accelerator

registers.

Deliverable D3.1 ISOLDE Page: 124

D3.1 ISOLDE - public 17.05.2024

v2dsgt.vs Set greater than Set 1 in masking array if any element of rs1 is less than rs2. rs1 -

2d accelerator data, rs2 - core scalar data.

v2dbase Set register base
address

Set accelerator register base address.

sync Synchronization By default, the accelerator works in asynchronous mode. After
fetching an instruction, it will flag the instruction as done. This
synchronization instruction stalls the scalar core until the accelerator
instruction is completed and all data is written back to the main
memory.

maskon Start working on
masking mode

Working with masking array.

maskoff Stop working on
masking mode

Working without masking array.

Table 3.4.6.5-3: Vector-SIMD Accelerator - Instruction with detailed explanations.

3.4.6.6 Interfaces

We decided to go with a tightly coupled accelerator. For the RISC-V cores, OpenHW group defined a
dedicated accelerator interface. The interface is called CV-X-IF and it is very versatile and easy to extend.
The scalar core sends to the accelerator only the core’s invalid opcodes and the accelerator has access to
the scalar core’s registers.

The second interface we need is one for memory access, and there are multiple solutions. We decided to
deliver a solution simple to integrate. We decided to use an AXI interface because in modern systems the
AMBA buses are very commonly used.

CV-X-IF

CV-X-IF is an interface available on specific RISC-V cores. This interface was designed for tightly coupled
accelerators. CV-X-IF uses a dedicated protocol to send the unknown opcodes to an external unit.
Furthermore, this interface allows read and write access to the scalar core registers. Additionally, this
interface includes a handshake method to notify the scalar core when the instruction is done.

Currently this interface is implemented in NOEL-V and CVA6 cores. With this interface, an accelerator could
be coupled to a multicore microprocessor, because every core has a unique identifier associated.

AXI-MM

We wanted a common interface for memory access. The most used interfaces in modern SoCs come from
the AMBA family (designed by ARM). It defines interfaces with different performance levels targeting
various applications.

The AXI-MM is an AMBA interface designed for data transfer.

3.4.6.7 Clocking Strategy

The accelerator has two interfaces on two different buses. This implies the accelerator already has two
clock domains. The internal logic will work at a different and higher clock speed. Inside the accelerator there
are two components: the Register File and the Arithmetic Unit. These work at different speeds, so a design
space exploration to accommodate that is to be employed.

Working on multiple clock domains requires extra logic. This is needed to prevent metastability and ensure
data integrity. We opted for two solutions: asynchronous FIFO and clock crossing synchronizing. The
asynchronous FIFO is used where there is a large and fast data exchange, like communication between

Deliverable D3.1 ISOLDE Page: 125

D3.1 ISOLDE - public 17.05.2024

Register File and Arithmetic Unit. The clock crossing synchronization is used for control signals, because
the changes are very slow. The Control Unit signals are synchronized with the destination components. A
detailed clocking strategy and synchronization is presented in Figure 3.4.6.7-1.

Figure 3.4.6.7-1: Vector-SIMD Accelerator - Clocking scheme

3.4.6.8 Reset Strategy

The accelerator will work with an asynchronous active in low reset. Both buses provide this type of reset.
Because we have two resets, we will combine them with an AND gate to have a single reset signal for
accelerators. For detailed reset scheme see Figure 3.4.6.8-1.

The reset will erase all software defined registers, reset the valid flag, and set all of the other fields to zero.
Upon resetting of all the counters, the user configuration will be also set to zero. It will not clear the
scratchpad memory.

Deliverable D3.1 ISOLDE Page: 126

D3.1 ISOLDE - public 17.05.2024

Figure 3.4.6.8-1: Vector-SIMD Accelerator - Reset scheme

Deliverable D3.1 ISOLDE Page: 127

D3.1 ISOLDE - public 17.05.2024

3.4.7 Extension Platform (EXP) – TUI

Part of Task 3.4 SIMD/Vector, AI accelerator and tensor processor unit design.

3.4.7.1 General Information

The Extension Platform (EXP) is a component that can be instantiated in a RISC-V based SoC. The
architecture of the EXP comprises data processing units, a memory and an interconnection network
alongside the required control logic. A data processing unit is named Processing Engine (PE). It is formally
defined as a digital design employed to accelerate computations often found in the digital signal processing
domain. One such unit implements a part of the Coordinate Rotation Digital Computer
(CORDIC) [Walther2000] dataflow. Another example is the computation of streamed Discrete Fourier
Transform (DFT). These units can be viewed as operators processing the input data. The EXP architecture
allows for composition of these operators to reduce latency.

3.4.7.2 Purpose and Scope

EXP's main purpose is to allow simultaneous processing of data words (SIMD) with a low latency. EP
should mainly target digital signal processing specific computations in a streaming input/output fashion. A
goal is to permit composition of computations to further contribute to CPU offloading.

3.4.7.3 Place in the System

Figure 3.4.7.3-1: Extension Platform – Place in the system

EXP is presented in Figure 3.4.7.3-1. EXP is the generic name of the hardware module that incorporates
computation specific VPUs. EXP is connected to the RISC-V core using a CV-X-IF interface. EXP has a
high bandwidth link to the main memory for large size data transfers (blocks, vectors).

Deliverable D3.1 ISOLDE Page: 128

D3.1 ISOLDE - public 17.05.2024

3.4.7.4 Block Diagram

Figure 3.4.7.4-1: Extension Platform – Block diagram

EXP high-level block diagram is presented in Figure 3.4.7.4-1. It encompasses several PEs. Multiple PEs
may be instantiated and connected through an interconnection network (INET) to scale performance as
needed. PEs may be simple ALUs or more complex VPUs. PEs may be homogenous or heterogenous.
External DMA modules move data to or from this shared memory. The proposed architecture provides
composability and should facilitate design space exploration. The communication interfaces are standard
interfaces such as CV-X-IF or AMBA family.

One possible PE operation mode is described next: PE starts execution immediately after input data is
available in its own input FIFO. It will continue execution for at least the number of cycles required by its
processing logic. The result of the processing flow will be stored in the PE’s own output FIFO. This
completes the data flow. PE is now ready for new data. If the own input FIFO is empty, PE execution will
be suspended. Otherwise, PE will read the next input from its own input FIFO and process it. If its own
output FIFO happens to be full, it will stall execution and will wait for clearance. An example of a dataflow
chaining between PEs could be the computation of the complex DFT, which output will be transferred to
the input FIFO of the PE implementing the atan2 function. Another feature considered is the usage of tags

to identify streamed data.

3.4.7.5 ISA

The number and format of the instructions needed to interact with EXP will be available later. These
instructions, however, will implement the communication of information about the location of the input (and
output, respectively) in the shared memory. Also required is the number of vectors to be processed in a
pipelined fashion. These vectors represent the dataset on which PEs operate. Another piece of information
is about the composition of PEs, composition order and, possibly, the number of iterations.

3.4.7.6 Interfaces

CV-X-IF and one or more from AMBA family.

3.4.7.7 Clocking Strategy

The EXP architecture incorporates a minimum of two clock domains, utilizing clock gating techniques. PEs
can function at varying clock frequencies and feature clocks that are gated. Due to this design decision,
there is a requirement for clock domain crossing modules to facilitate communication between certain
components.

Deliverable D3.1 ISOLDE Page: 129

D3.1 ISOLDE - public 17.05.2024

3.4.7.8 Power Management Strategy

The design adheres to the functionalities outlined in the clocking strategy section. These have a positive
impact on power usage. The plan is to implement multiple power states, each offering different degrees of
functionality within the design and associated benefits in power consumption.

3.4.7.9 Debugging Strategy

The debugging infrastructure needs to support inspection and modification of state in specific sections
within PEs. The central debugging mechanisms are located within the INET module. All blocks that can be
debugged are designed to react to control signals sent from the central debugging system. Scan chains
could be integrated into these blocks.

Deliverable D3.1 ISOLDE Page: 130

D3.1 ISOLDE - public 17.05.2024

3.5 Cryptographic and Security Accelerators

Task 3.5, M3-M33, Task Leader: SAL

The aim of this work package is the execution of cryptographic primitives using parametric hardware
accelerators, with protection against side channel attacks enabled by design. These HW building blocks
will be integrated with a RISC-V processor in an FPGA to support non-accelerated control operations.
POLIMI is working on the integration of a hardware accelerator for the post-quantum key encapsulation
mechanism (KEM) BIKE - the design will support key generation, encapsulation, and decapsulation
primitives of the BIKE KEM - this design will be a part of the space demonstrator. BSC aims to integrate
the Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM; CRYSTALS-Kyber), and the Module-
Lattice-Based Digital Signature Algorithm (ML-DSA; CRYSTALS-Dilithium) into the NOEL-V platform,
intended for the space and automotive demonstrators. IMT is developing optimized algorithms for NTT for
polynomial multiplications used in Post-Quantum Cryptography (PQC) algorithms. This will be developed
into a generic accelerator for polynomial multiplication based on the NTT in a large ring ZN[X], taking
advantage of many roots of unity with trivial multiplication and of fast Fast Fourier Transform (FFT)
algorithms (SIMD like vectorization for lengths 2a, 2a3 and 2a5). It is intended for the automotive and space
demonstrators. SAL is working on the Classic McEliece implementation as a separate coprocessor, with
the polynomial multiplication accelerated by an NTT block. The possibility of other PQC accelerators is also
being explored, with the final use case in the automotive and possibly the space demonstrators.

Investigation of side channel and fault injection resistance of these systems will be achieved by comparing
the HW accelerator implementations against a pure SW implementation at a later stage.

IP
Lead

Beneficiary
Type Domain Dependencies Licensing

ACC-BIKE POLIMI Core PQC acceleration AMBA AXI4 Proprietary

HLS-PQC BSC Core PQC acceleration
Pulp Platform
AXI

Permissive
open source
(SHL-0.51)

NTT IMT Algorithm PQC acceleration None
Restrictive
open source
(GPL-3.0)

PQC-MA SAL Core PQC acceleration CVA6, CV-X-IF Open source

SEC BEIA Core
Processor with
cryptographic
accelerators

None
Permissive
open source
(CC-BY-4.0)

Table 3.5-1: Overview of contributions in Task 3.5

https://developer.arm.com/Architectures/AMBA
https://github.com/pulp-platform/axi
https://github.com/pulp-platform/axi
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/core-v-xif

Deliverable D3.1 ISOLDE Page: 131

D3.1 ISOLDE - public 17.05.2024

3.5.1 Accelerator for Post-Quantum Key Encapsulation Mechanism
BIKE (ACC-BIKE) – POLIMI

Part of Task 3.5 Cryptographic and security accelerators.

3.5.1.1 General Information

This module handles the integration and documentation of a hardware accelerator for the post-quantum
KEM BIKE, which is a candidate in the PQC standardization process by National Institute for Standards
and Technology (NIST), USA. The NIST competition aims to design crypto schemes that can be executed
on traditional computers and are secure against both traditional and quantum attacks. BIKE is a code-based
KEM that makes use of quasi-cyclic moderate-density parity-check (QC-MDPC) codes [Baldi2014]. Such
QC-MDPC codes are employed in a scheme similar to the well-studied Neiderreiter cryptosystem, which
dates to the early 1980s [Niederreiter1986]. The public-private keypairs, plaintexts, and ciphertexts of BIKE
are represented, due to the quasi-cyclic property of BIKE codes, as binary polynomials with a bitlength in
the order of tens of thousands of bits (kbits). Moreover, the moderate-density nature of the underlying code
employed by BIKE further eases decoding by leveraging a sparse representation of the polynomials, with
a Hamming weight in the order of few hundreds.

3.5.1.2 Purpose and Scope

This accelerator aims to provide hardware support for the key generation, encapsulation, and decapsulation
primitives of the BIKE KEM. It is designed to be integrated in platforms making use of an AXI interface.

3.5.1.3 Place in the System

The accelerators for the BIKE cryptosystem can be interfaced with the RISC-V CVA6 or NOEL-V cores
through the AXI interface they expose.

3.5.1.4 Block Diagram

Figure 3.5.1.4-1: ACC-BIKE - Block diagram

Deliverable D3.1 ISOLDE Page: 132

D3.1 ISOLDE - public 17.05.2024

The accelerator provides separate support for the three primitives, each of whom can be optionally
instantiated in hardware. The hardware acceleration for the BIKE KEM can be integrated into computing
platforms by making use of the AXI interface exposed by the primitives’ submodules as shown in Figure
3.5.1.4-1. Due to its QC-MDPC code-based nature, BIKE makes use of binary polynomial and QC-MDPC
codes arithmetic. In particular, the most computationally intensive operations are binary polynomial
inversions (in the key generation primitive), the Black-Gray-Flip variant of QC-MDPC bit-flipping decoding
(in decapsulation), and binary polynomial multiplication (in all three primitives).

Deliverable D3.1 ISOLDE Page: 133

D3.1 ISOLDE - public 17.05.2024

3.5.2 HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC)
– BSC

Part of Task 3.5 Cryptographic and security accelerators.

3.5.2.1 General Information

Communication security is one of the most important characteristics of a system. In recent years,
researchers have discovered significant weaknesses in current public-key cryptographic algorithms using
quantum computing. As a result, organizations such as NIST are standardizing several quantum-resistant
algorithms. Therefore, we have decided to integrate an accelerator based on High Level Synthesis (HLS)
into the SELENE SoC (NOEL-V core), implementing the Key Encapsulation Mechanism ML-KEM (FIPS-
203) and the Digital Signature Scheme ML-DSA (FIPS-204). Both are based on CRYSTALS-Kyber and
CRYSTALS-Dilithium schemes respectively.

3.5.2.2 Purpose and Scope

Our developments focus on optimizing the PQC standardizations. One way to improve the performance is
to use PQC specific accelerators instead of executing PQC functions in a general-purpose processor. Our
acceleration technique is based on high-level synthesis. By using high-level software language extensions,
tools can interpret software code to generate HDL. This allows, in an easier way, the translation of a
software application/algorithm to hardware description.

NIST purposes to standardize one KEM and two Digital Signature Schemes (DSS). The KEM is the ML-
KEM. The DSS are the ML-DSA and Stateless Hash-Based Digital Signature Algorithm (SLH-DSA). For
this project, we decided to integrate an HLS-based accelerator for the ML-KEM and the ML-DSA, as they
share similar computation modules.

3.5.2.3 Place in the System

The modules are connected to the core via the NOC with the AXI4 protocol, as shown in Figure 3.5.2.3-1.

The AXI Lite connects the core with the accelerator to select the memory directions of the data and the
control signals.

Each accelerator is connected using a Network on Chip (NoC), adhering to the AXI-Full protocol. For every
data argument, there exists a dedicated AXI-Full data bus that facilitates data transmission to the memory.

Deliverable D3.1 ISOLDE Page: 134

D3.1 ISOLDE - public 17.05.2024

Figure 3.5.2.3-1: HLS-PQC - Place in the system

3.5.2.4 Block Diagram

The algorithms are split into modules depending on their functionality in such a way that we maximize the
parallelization so that, by pipelining the algorithm, its different parts can be performed in parallel. Each
module contains a self-descriptive name for the task it performs, as shown in Figures 3.5.2.4-1, 3.5.2.4-2,
and 3.5.2.4-3.

Deliverable D3.1 ISOLDE Page: 135

D3.1 ISOLDE - public 17.05.2024

Figure 3.5.2.4-1: HLS-PQC - ML-DSA Sign

Deliverable D3.1 ISOLDE Page: 136

D3.1 ISOLDE - public 17.05.2024

Figure 3.5.2.4-2: HLS-PQC - ML-DSA Verify

Deliverable D3.1 ISOLDE Page: 137

D3.1 ISOLDE - public 17.05.2024

Figure 3.5.2.4-3: HLS-PQC - ML-KEM Encapsulation (left) and Decapsulation (right)

Deliverable D3.1 ISOLDE Page: 138

D3.1 ISOLDE - public 17.05.2024

3.5.2.5 Interfaces

In this interface communication the processor is the Master, and the accelerator is the Slave.

ML-KEM Interface

In the first table below (Table 3.5.2.5-1), we can see all the configuration registers They are divided into
control (CTRL), interruption management (GIER, IER, ISR), the operation selector (kem_cfg), and the base

memory address for each I/O data port. All these configuration registers must be set by the processor
before starting a new operation (except for the interrupt status register ISR). In addition, we have 5 I/O data

buses of 32-bit data width, managed by the AXI4-Full protocol. In the second table (Table 3.5.2.5-2), we
can see these AXI interfaces, where in this case, the accelerator acts as a Master. Some buses (i.e, gmemct

and gmemss) are used by both dataflows (Encapsulation and Decapsulation).

Table 3.5.2.5-1: HLS-PQC - Configuration registers managed by s_axi_control (AXI-Lite Interface)

Table 3.5.2.5-2: HLS-PQC - AXI-Full Data Interface

ML-DSA Interface

In the first table below (Table 3.5.2.5-3) we can see all the configuration registers, which are divided into
control (CTRL), interruption management (GIER, IER, ISR), operation selection (kem_cfg), and the base

memory address for each I/O data port. All these configuration registers must be set by the processor
before starting a new operation (except for the interrupt status register ISR). In addition, we have 5 I/O data

buses of 32-bit data width, managed by the AXI4-Full protocol. In the second table (Table 3.5.2.5-4), we
can see these AXI interfaces, where in this case, the accelerator acts as a Master. Some buses (i.e,
gmemout) are used by both dataflows (Signature and Verification).

Deliverable D3.1 ISOLDE Page: 139

D3.1 ISOLDE - public 17.05.2024

Table 3.5.2.5-3: HLS-PQC - Configuration registers managed by s_axi_control (AXI-Lite Interface)

Table 3.5.2.5-4: HLS-PQC - AXI-Full Data Interface

Deliverable D3.1 ISOLDE Page: 140

D3.1 ISOLDE - public 17.05.2024

3.5.2.6 Clocking Strategy

The accelerator contains only one clock, which is provided by the system clock. In our experiments, the
system clock reaches a frequency of 100 MHz. However, the accelerator itself can reach up to 500 MHz.

3.5.2.7 Reset Strategy

The PQC accelerator integrates only one reset method, the hardware active low reset signal through the
input port ap_rst_n. Hardware reset completely wipes all data from both ML-KEM and ML-DSA

accelerators, resetting the module to a blank state and interrupting any on-going transaction.

3.5.2.8 Verification Strategy

To verify the design, we have designed two C tests for each scheme (encapsulation, decapsulation,
signature and verify) to be executed by the core in a "baremetal" way. Thus, to see the results of these
tests, we can simulate the SoC in a software simulator (Xcelium [33]) or in an FPGA.

Regarding the implementation of the tests, first we obtained the inputs and outputs of the original
Kyber/Dilithium algorithm (executing it in an x86 machine), and we incorporated them in a header file for
our test. Thus, by including the same inputs to the accelerator, it should give the same outputs as the
extracted ones. In summary, the methodology followed by the tests is the following:

1. Write to the kem_cfg accelerator register to choose the functionality of the accelerator (For ML-

KEM: Encapsulation=0, Decapsulation=1. For ML-DSA: 0=Signature, 1=Verify).
2. Load the input/output vector addresses (the ones we have as global on the header file) to the

correspondent configuration registers of the accelerator.
3. Raise the start flag (write 1 to CTRL configuration register) and enable interruptions (IER=1 and

GIER=0).

4. Wait for the accelerator results, performing a busy-wait polling. This means reading the ISR
configuration register in a loop until it returns 1.

5. Read the results from global memory and compare them with the golden references extracted from
the x86 execution.

6. Go back to step 1 for another try, where the inputs can be changed.

To extract performance results, the SELENE SoC contains a PMU. With some directive calls (i.e., reset,
start, stop), we can extract the cycles taken from a part of the code. In our case, the part of interest is the
waiting poll (step 4), which reflects the time it takes for the accelerator to perform the entire computation.

Deliverable D3.1 ISOLDE Page: 141

D3.1 ISOLDE - public 17.05.2024

3.5.3 Number Theoretic Transform Algorithms for Post Quantum
Cryptography (NTT) – IMT

Part of Task 3.5 Cryptographic and security accelerators.

3.5.3.1 General Information

Post quantum cryptography and NTT

PQC aims to replace classical public-key cryptography with new schemes that are robust against attacks
using quantum computers. Two of the most widely used public-key cryptographic algorithms: elliptic curve
cryptography (ECC) based on the discrete logarithm problem, and Rivest–Shamir–Adleman (RSA) based
on the prime factorization problem, are both prone to be solved in polynomial time by Shor’s quantum
algorithm.

During the fourth round of its standardization process for PQC, NIST has selected several algorithms
(based on lattice, hash and code schemes) for public-key encryption and digital signature. The analysis
done in a recent work building a crypto-processor for RISC-V [Lee2023], has identified the multiplication of
polynomials over finite rings Zq[X]/P(x) as a possible target for accelerating many PQC computations (other
identified targets are hash functions, modular multiplication and modular reduction and sampling from a
given probability distribution).

There are many algorithms to accelerate the multiplication of two polynomials, for example Karatsuba and
Toom-Cook multiplication [Bernstein2001]. Polynomial multiplication is equivalent to the convolution of two
vectors (containing the polynomial coefficients), and the best asymptotical algorithm for large polynomial
degrees is a special case of the Fast Fourier Transform – adapted to finite rings – called the Number
Theoretic Transforms (NTT). However, not all choices of q and P(x) are compatible with the NTT. In these
cases, the usual solution is to use Karatsuba multiplication combined with various tricks specific to each
case to accelerate the calculations. A recent review is in [Liang2022].

We note that all lattice based PQC algorithms selected by NIST are NTT friendly, being all built around
choices of the finite polynomial rings that admit NTT for powers of 2 and giving a tremendous speed
advantage compared to other algorithms from the previous rounds. However, there were concerns among
some crypto experts that the additional algebraic structure needed to be NTT friendly increases the surface
attack of these algorithms, even if today there is no known attack using this.

As a cautionary tale, one third round finalist, SIKE, appears on the NIST website with the comment: “The
SIKE teams acknowledges that SIKE and SIDH are insecure and should not be used”, due to the recent
(2022) discovery of an efficient and practical key recovery algorithm [Castryck2022]. This shows that there
is a risk that algorithms already chosen for standardization may prove in the future insecure. It is important
then to have flexible implementations, especially hardware ones, which are not tied to the particularities of
one PQC algorithm, making it easy to switch to some other algorithm as need arises.

It seems therefore reasonable to develop an “universal” algorithm based on NTT for the product of two
polynomials in finite rings, without restrictions on the modulus and polynomial degree and then provide a
generic NTT accelerator, useful for all cases, including PQC algorithms with that are NTT friendly.

Polynomial products in Zq[X]/P(x) via NTT

A post-quantum cryptography module will need to provide the product of two polynomials in finite rings
Zq[X]/P(x), one of the most time-demanding operations. Not every choice of q and P(x) permits the use of
NTTs, a special case of the FFT to accelerate this calculation. Therefore, at first view, the utility of an NTT
hardware accelerator seems limited. However, a similar problem in the DSP world (how to use the power-
of-two FFT for other lengths) has a simple solution – extend the original vectors by zeros up to the next
power of two, calculate the cyclic convolution with power of 2 FFTs, reinterpret the result as the linear

Deliverable D3.1 ISOLDE Page: 142

D3.1 ISOLDE - public 17.05.2024

convolution of the original vectors, and finally wrap this linear convolution to obtain the sought-after cyclic
convolution.

Adapting this idea to the product of two polynomials in Zq[X]/P(x), we need to calculate their product in Zq[X],
which is equivalent to the linear convolution, and then reduce it modulo P(x), equivalent to a wrapping
around P(x). To calculate the linear convolution, we can extend the vectors by zeros up to a length N power
of 2 as above and calculate their cyclic convolution in Zq[X]/(XN-1). However, a new problem appears as Zq

does not in general have roots of unity of order N like in the real/complex case (we need N to be a divisor
of q-1 to have the required roots of unity). The solution is to work in another finite ring Zp that admits roots
of unity of order N. To be able to recover the original residues modulo q, we need this p to be so large that
the result in Zp[X]/(XN-1) is the same as if the cyclic convolution would have been done in Z[X]/(XN-1). Then
we can easily do a reduction modulo q as the last step. If n is the degree of P(x), then the above condition
on p becomes:

p > n (q-1)2 (3.5.3.1-1)

We now propose two choices for p, giving two “universal” algorithms that use NTT for powers of 2 to
calculate the product of two polynomials in Zq[X] for arbitrary choices of q and degree n of the polynomials,

with the only constraint being Equation 3.5.3.1-1.

Algorithm 3.5.3.1-1: NTT based on a single large prime (NTT_LARGE_PRIME)

Our choice for p is the prime number:

p = 264- 232 +1, p-1 = 232 x 3 x 5 x 17 x 257 x 65537

Therefore, we have roots of unity of order powers of 2 up to 232 in Zp. With this choice, we can treat all PQC
choices for modulus/polynomial degrees in the NIST submissions. For example, we can cover polynomial
products for all 16-bit integers q and degrees up to 231 (q < 216, n < 231). Or we can cover all 24-bit integers
q and degrees up to 215 (q < 224, n < 215).

When doing arithmetic in Zp, we may use Montgomery modular multiplication with auxiliary modulus R= 264,
which implies two supplementary multiplications with p and p’=(p-2) such that pp’= -1 mod(R). For the
hardware implementation, these multiplications with p and p’ can be replaced each with two
adds/subtractions and two shifts. Another option that takes advantage of p being a Solinas prime (or
generalized Mersenne prime), replaces the two multiplications needed for the reduction modulo p with only
one addition and two subtractions of 64-bit integers. This second option is especially suitable for hardware
implementation.

Another advantage is that 2 is a root of unity of order 192 = 3 x 64, so that multiplication by roots of unity of
order 64 are actually trivial shifts. This is similar to multiplication by j and –j being trivial for real/complex
FFT and can be used to further accelerate the NTT. We note that also multiplication by the square root of
2 is almost trivial, being only 2 shifts and an addition, and therefore all multiplications by roots of unity of
order 128 are trivial (no multiplication involved).

The only disadvantage of this choice is that we need to work internally with 64-bit integers, which is not
always suitable for embedded applications, and we need the full 128-bit results of multiplying two 64-bit
integers.

Algorithm 3.5.3.1-2: NTT based on several small primes combined using the Chinese Remainder
Theorem (NTT_CRT)

This algorithm reduces the burden of using 64 bits integers for doing polynomial multiplication in Zq[X]/(P(X))
for relatively small values of the modulus q and degree n. It does the polynomial multiplication in Zpi[X] for
several “small” primes pi and then combines the results via the Chinese Remainder Theorem (CRT) to
obtain the product polynomial in Zp[X] where p = p1 p2 p3 ... is the product of these primes. Note that we still
need to respect Equation 3.5.3.1-1. For example, the choice:

p1 = 12289 = 214 – 212 + 1,

Deliverable D3.1 ISOLDE Page: 143

D3.1 ISOLDE - public 17.05.2024

p2 = 40961 = 215 + 213 + 1,

p3 = 61441 = 216 –212 + 1,

all with auxiliary modulus R=216 and each having roots of unity for powers of 2 up to 212 permits the
multiplication of two polynomials of degree up to 2048 in Zq[X] with q < 216 = 65536, and all operations done
on 16-bit integers (q < 216, n < 211).

The disadvantage of this method is that we need to calculate several polynomial products and their CRT
combination, but this could be parallelized in a hardware implementation.

Finally note that this method can be easily adapted to larger values of q and n by choosing larger primes p i

and also a larger auxiliary modulus R, for example R=232, using operations on 32-bit integers.

Acceleration of NTT

We have seen above that we need to calculate the cyclic convolution cyc_conv(a,b) of two polynomials a,b
in Zp[X]/(XN-1), with p a prime number and N a power of 2 that is a divisor of p-1. This cyclic convolution
can be done via algorithms similar to the FFT, by using NTT and its inverse NTT-1:

cyc_conv(a,b) = NTT-1(NTT(a).*NTT(b)), (3.5.3.1-2)

where “.*” is pointwise multiplication similar to MATLAB notation and where the complex roots of unity of
order N are replaced with roots of unity of order N in Zp.

The same algorithms NTT, NTT-1, and a pointwise multiplication like in Equation 3.5.3.1-2 but with different
roots of unity can be used to calculate the Nega cyclic convolution negcyc_conv(a,b) of two polynomials
a,b in Zp[X]/(XN+1), which is widely used in PQC algorithms that are NTT friendly. However, a subtle
difference is that some of these algorithms use NTT even in the case where some roots of unity are still
missing. For example, in Kyber with p = 3329 (p-1 = 28 x 13) and the ring Z3329[X]/(X256+1), there are roots
of unity of order 256 but none of order 512, needed as (X512 – 1) = (X256 – 1) (X256 + 1).

In this case, the NTT transform of a vector a, NTT(a), does not represent 256 numbers in Z3329 but 128
polynomials of degree 1 and with coefficients in Z3329, and the pointwise multiplication in Equation 3.5.3.1-
2 must be replaced with a modular multiplication of these degree-one polynomials. To cover this case, our
NTT module must be able to stop at some predefined level.

The number of operations (additions and multiplications) for NTT is proportional to N log2N, making
Algorithm 3.5.3.1-2 the fastest algorithm, at least asymptotically. However, for a practical implementation,
the constant that multiplies the N log2N term, the capability to vectorize / parallelize the chosen algorithm,
and many other factors contribute to its speed. By using the same techniques as for the FFT accelerator in
Task 3.6 (Section 3.6.1), we hope to obtain a generic NTT accelerator able to compete with state-of-the-
art algorithms for NTT friendly choices, and useful for most PQC schemes, including those without an
algebraic structure permitting the use of NTT.

3.5.3.2 Purpose and Scope

We have shown in the introduction that the power-of-two Number Theoretic Transform (NTT) may be used
in most PQC schemes to calculate the product of two polynomials over finite rings Zq[X]/(P(X)) for arbitrary
q and degree n of P(X).

For the first algorithm NTT_LARGE_PRIME, we propose a radix-128 NTT that reduces drastically the
number of multiplications by taking advantage of the fact that roots of unity of degree 128 are either powers
of 2 or a sum of two powers of 2, such that multiplication with these roots becomes trivial (equivalent to
shifts and additions). We also show that the algorithm can be easily vectorized for short vectors, typical for
SIMD, with vector lengths V=2,4,8,16.

For the second algorithm, NTT_CRT, where there are no trivial multiplications beyond 1 and –1, we propose
a radix-8 NTTT algorithm, which also covers the case of negative wrapped (Nega cyclic) convolutions,

Deliverable D3.1 ISOLDE Page: 144

D3.1 ISOLDE - public 17.05.2024

extensively used by some NTT-friendly NIST PQC schemes. Again, the algorithm is easily vectorized for
short vectors.

In both cases we also discuss a possible module architecture implementing the NTT and its inverse. The
focus of our work was less hardware oriented, and more algorithm oriented.

3.5.3.3 Place in the System

The NTT algorithms we propose can be used in two ways. First, they can be used as software algorithms
taking advantage of various extensions to RISC-V (vectorial extension, SIMD extension, or an extension
for modular arithmetic). Second, they could be implemented in hardware as memory-mapped accelerators
attached to a system bus such as AMBA AXI, while a separate cryptographic coprocessor attached to the
CPU by a dedicated interface offloads the NTT and its inverse as needed.

3.5.3.4 Block Diagram

NTT_LARGE_PRIME

Figure 3.5.3.4-1: NTT - Diagram for a radix 128 NNT for a large prime p = 264- 232 +1

Figure 3.5.3.4-1 shows a recursive decimation-in-frequency NNT with scrambled output using radix-128
steps, equivalent to 7 radix 2 steps. The radix128 block has 128 inputs and 128 outputs. Note that algorithm
is not in place, as the input coefficients (16-bit integers) need to be immediately widened to 64-bit integers.
Therefore, the output of the radix-128 block (after multiplication with twiddle factors) needs to be saved in
a buffer and used as input for the next step.

The 128 outputs need to be multiplied by 128 twiddle factors or roots of unity, and then reduced modulo p.
Each of these 128 operations implies a full multiplication of two 64-bit integers to a 124-bit result and
reduction back to a 64-bit result modulo p. The reduction itself does not need any supplementary
multiplication like in Montgomery or Barrett reductions, only 1 shift, one addition and two subtractions of
64-bit integers. If there is no hardware option for full 64-bit multiplication, one can easily mimic it using
multiplication of 32bits integers with a full 64bits result.

We need to use a buffer to save the full output with N values, as we cannot write back to the memory due
to the widening to 64 bits. Then the same radix-128 block can be applied to each chunk of N/128 values,
with a new value of N=N/128, and with new roots of unity. At the last step, depending on the value of N,

Deliverable D3.1 ISOLDE Page: 145

D3.1 ISOLDE - public 17.05.2024

one needs a 64, 32, 16, 8, 4 or 2-radix step. In software, the simplest way is to program such blocks
independently. If the radix-128 block is built in hardware, then it can be configured to use only a part of the
128 inputs and bypass some internal levels, equivalent to a reduced radix block. Clock gating can be also
used to reduce the power for the unused parts.

The algorithm can be easily parallelized in SIMD manner, by working in parallel on V values, with V a power
of 2. The only problem appears at the last levels when N is smaller than V itself. A simple solution, used
especially for small values of V (2,4,8,16) is to stop the radix steps at N=VxV, then transpose each VxV
chunk as a VxV matrix, and then continue down to N=1 as before.

A different and better solution is to replace the buffer with a scratchpad memory, or PolyMem, polymorphic
memory as proposed in [Ciobanu2018]. Then there will be no need to do the VxV transposes, as this
memory can be configured with VxV matrices and read as rows or as columns. Note that an extension of
this polymorphic memory will be developed in ISOLDE by IMT, and we plan to test NTT with this extension.

A similar diagram as in Figure 3.5.3.4-1 can be used for the inverse NTT. Note that due to the scrambled
output, we cannot reuse the same radix-128 block for the inverse NTT, and we need to implement a
separate block that is the transpose of the direct block, reversing the flow from outputs back to inputs.

To compare to the fastest NTT used in PQC, that used by Kyber, we need to extend the original arrays of
length 256 by zeros to 512. Then, for each array of length 512, we need to apply a radix-128 step and then
a radix-4 step, with only 512 multiplications. Then we need another 512 multiplications to multiply the
transforms pointwise, and then a single inverse NTT with another 512 multiplications. At the end, we still
need to reduce first with respect to (X256 + 1) with 256 subtractions, and then to reduce each coefficient
modulo 3329, equivalent to other 3x256=768 simple multiplications. In total we need 2816 integer
multiplications. The NTT used in Kyber needs 7 steps of radix 2 with 7*128 modular multiplications, a
multiplication of 128 pairs of polynomials of degree 1 with 3*128 modular multiplications and then an inverse
NTT again with 7*128 modular multiplications. In total we obtain 3072 modular multiplications, each being
done with Montgomery or Barrett multiplications and needing each 3 integer multiplications. In total we
obtain 9216 integer multiplications, 3.3 times more than our proposal. However, we need to consider that
all integer multiplications for Kyber are done with 16bit numbers, while our multiplications are done with
64bit numbers. Also, in practice, some software implementations of Kyber use SIMD acceleration to
drastically reduce the total running time, whereas the use of 16bit integers may prove advantageous as
more values can be compressed in a SIMD vector. However, a hardware implementation of NTT using the
diagram above could prove comparable to Kyber specific implementations, with the bonus of having an
“universal” NTT applicable to many other PQC algorithms.

NTT_CRT (NTT Chinese Remainder Theorem)

Deliverable D3.1 ISOLDE Page: 146

D3.1 ISOLDE - public 17.05.2024

Figure 3.5.3.4-2: NTT - Diagram for a radix 8 NNT for small prime p

The diagram in Figure 3.5.3.4-2 shows a radix 8 NTT modulo a small prime of a special form, such that
Montgomery or Barrett multiplication does need only a couple of shifts and integer additions or subtractions
to achieve the reduction modulo p. Compared to the previous diagram, the prime p is rather small, so we
can use 16bit or 32bit integers. The diagram shows how to use a vectorial or SIMD accelerator to do these
NTT faster. Note that a transpose step is needed at level VxV where V is the length of the SIMD, similar to
Figure 3.5.3.4-1. Also, in this case we will explore the use of PolyMem, a polymorphic memory, to cache
intermediate results.

A similar diagram as in Figure 3.5.3.4-2 is used for the inverse NTT, which is essentially the transpose of
the direct one. Note that one cannot use the same algorithm for direct and inverse due to the scrambled
output. For the convolution, one uses Equation 3.5.3.1-2 - NTT for both arrays, point-wise multiplication of
transforms, followed by one inverse NTT. The same convolution needs to be done for several primes p i,
and their results combined via the Chinese Remainder Theorem to obtain the convolution in Zp[X] where p
= p1 p2 p3. Finally, one needs to reduce modulo the polynomial P(x) and then modulo the original prime q,
using an auxiliary modulus R= 264.

For the case of NTT-friendly algorithms, the diagram in Figure 3.5.3.4-2 can be used directly for a single
prime, the one used in the algorithm. Acceleration can be obtained by using SIMD type vectorization with
small values of V.

A possible hardware implementation would follow the same diagram and ideas.

Deliverable D3.1 ISOLDE Page: 147

D3.1 ISOLDE - public 17.05.2024

3.5.4 Post-Quantum Crypto Accelerator (PQC-MA) – SAL

Part of Task 3.5 Cryptographic and security accelerators.

3.5.4.1 General Information

Our module is a PQC coprocessor for the Classic McEliece with polynomial multiplication accelerated by a
Number Theoretic Transform module. The coprocessor talks to a CVA-6 RISC-V core via the CVX-IF
interface. The rest of the systems integrate an AMBA-AXI-4 bus as the main communication channel. We
are targeting the system to be demonstrated on a Xilinx VCU128 FPGA board.

3.5.4.2 Purpose and Scope

The module targets the Automotive and Space demonstrators, where they will have similar interfaces to
their own RISC-V cores in hardware and software.

3.5.4.3 Place in the System

The SAL PQC module is a hardware accelerator with specialized modules that speeds up computation

performed by some of the security modules developed by the ISOLDE project. The module uses the RISC-

V core from the CVA-6 being developed as part of WP2. The accelerator instructions are transferred from

the core via the CV-X-IF, also under development. We will also contribute to the development of the

necessary instructions as part of WP3, as well as to the software toolchains and compilers as part of WP4.

The completed module is aimed mainly towards the automotive demonstrator as shown in the block

diagram found in Figure 3.5.4.3-1, but we study its possible application in the space demonstrator.

Figure 3.5.4.3-1: PQC-MA - Place in the system

3.5.4.4 Block Diagram

The architecture of our implementation in ISOLDE involves multiple open-HW modules along with the
modules developed at SAL. The design incorporates a CVA6, AXI-4 Bus, SRAM blocks, and various
peripheral/interface-bridge IPs and our own co-processor that focuses on processing PQC primitives as
shown in Figure 3.5.4.4-1. Our core RISC-V processor is the Open-HW Group’s CVA6. It has seen
widespread adoption for RISC-based PQC designs in recent years with its ability to extend the RISC-V
instruction set for PQC operations via the CV-X interface. This allows the implementation of a PQC
Instruction Set Extension (ISE) on-top of the RISC-V standard ISA, capable of speeding up the
computations compared to any memory mapped solution. We hope to have a partial implementation of
RISC-V’s ongoing PQC ISE.

For our co-processor, we draw inspiration from a number of papers that proposed a method of PQC
acceleration and existing non-PQC-based co-processors, particularly PULP’s vector co-processor, Ara.
The PQC co-processor will contain NTT & Inverse NTT (INTT) accelerators, targeted specifically for the
large key sizes involved in code based PQC schemes. In addition, an accelerator for non-NTT based
polynomial multiplications may be designed and included to provide better performance for the symmetric-
key portion of lattice-based communications. One final module we may decide to include is a memory

Deliverable D3.1 ISOLDE Page: 148

D3.1 ISOLDE - public 17.05.2024

management unit for the larger-keys to boost efficiency and security in key storage and retrieval, with the
additional functionality of improving security against side channel attacks and error-detection/- correction.

Figure 3.5.4.4-1: PQC-MA - Block diagram

3.5.4.5 Interfaces

The accelerator talks to the CVA6 core with a CV-X-IF and AXI. The rest of the modules are interfaced via
an AXI bus, for example for the memory units.

CV-X-IF

This handles the transfer of instructions from the core to the coprocessor and transfers the results back to
the core registers.

AXI

The overall system is built with an AMBA AXI bus, with the accelerator module also AXI-enabled.

3.5.4.6 Sub-Modules

The PQC module hosts an NTT accelerator submodule.

NTT/INTT

It allows to perform the multiplication of two discrete polynomials, which is a linear convolution in the finite
field as a much simpler, pointwise, multiplication operation. With NTT, frequently-used, complex
computational operations in PQC can be made quasi-linear, or “linearithmic” with time complexity of O(n
log n) compared to polynomial with a time complexity of O(n2).

Deliverable D3.1 ISOLDE Page: 149

D3.1 ISOLDE - public 17.05.2024

3.5.5 Secured RISC-V Processor with Cryptographic Accelerators
(SEC) – BEIA

Part of Task 3.5 Cryptographic and security accelerators.

3.5.5.1 General Information

An open-source distribution of a lightweight RISC-V processor is being enhanced to create a secured
version by incorporating cryptographic accelerators, designed to speed up encryption and decryption
operations. This secure version will be deployed in commercial applications and then contributed back to
the open-source community. The RISC-V architecture, known for its flexibility and cost-effectiveness, is
gaining traction as an alternative to proprietary ISAs. While it has advantages such as being free, sanction-
free, and easier to modify, it’s still relatively new and faces challenges in terms of ecosystem support and
feature parity with established ISAs like Arm or x86. The project aims to improve security while maintaining
an open-source approach.

3.5.5.2 Purpose and Scope

The primary goal is to take an existing open-source RISC-V processor and adapt it into a secure
microcontroller suitable for commercial applications. The focus is on enhancing security features, including
cryptographic acceleration, to ensure robust protection against threats. These accelerators enhance the
microcontroller’s ability to handle cryptographic algorithms efficiently as presented in Figure 3.5.5.3-1.

3.5.5.3 Place in the System

Figure 3.5.5.3-1: SEC - Place in the system

We must take into account the overall architecture, connectivity, and the function of each component while
designing a secure RISC-V microcontroller architecture with cryptographic acceleration for a smart home
use case (see Figure 3.5.5.3-1).

Primary Components:

• RISC-V Microcontroller (with cryptographic acceleration)

Location: Serving as the central processing unit, at the center of the system.
Its goal is to oversee all smart home features, such as data processing, connectivity with
peripherals, and security management using cryptographic techniques to ensure safe data storage
and transfer.

• Cryptographic Accelerator

Deliverable D3.1 ISOLDE Page: 150

D3.1 ISOLDE - public 17.05.2024

Location: Integrated inside the RISC-V microprocessor itself or attached to it as a separate module
offloading and speeding up cryptographic processes (encryption and decryption).

3.5.5.4 Block Diagram

Figure 3.5.5.4-1: SEC - Block diagram

CPU and memory, wireless digital circuits, peripherals, RF clock system and cryptographic acceleration
are among the components shown in Figure 3.5.5.4-1 that coalesce together to build an embedded system
which is robust as well as secure.

Also, the embedded system manages memory peripheral interactions, executes encryption algorithms from
initialization of the system and handles all user-peripheral interactions. This CPU has been designed
following the RISC-V ISA. During its operation it fetches instructions through a combination of two types of
memories: SRAM and ROM. The firmware that tends to be seldom changed on the other hand is usually
stored in ROM which includes such essential software as the bootloader for the systems and minimal
operating systems. In this case however, during start-up the CPU uses ROM to initialize itself. On the other
hand, SRAM provides high-speed temporary storage for data or instructions that are being actively used
by the CPU thus enabling rapid read/write operations which support dynamic processing tasks.

Modern connected applications depend on Wi-Fi modules for wireless communication. Networking
protocols at lower levels are dealt with by this Wi-Fi module that does signal modulation/demodulation
besides securing data while it traverses through network channels in form of encrypted/decrypted format.
The CPU interfaces with the Wi-Fi module to send and receive data packets, allowing the system to
communicate with other devices and networks wirelessly.

Deliverable D3.1 ISOLDE Page: 151

D3.1 ISOLDE - public 17.05.2024

Peripherals extend the system's capabilities, allowing it to interface with a wide range of external devices
and sensors. Various input and output activities can be connected to GPIO pins. These pins can either be
programmed by the CPU to receive signals from external sources like sensors or transmit signals for
controlling other hardware. The Analog-to-Digital Converter (ADC) enables the conversion of analog signals
into digital data which is then manipulated by the CPU. This feature is essential in interfacing with analog
sensors that detect physical quantities such as temperature or light. Furthermore, there is a system timer
that provides accurate timing functions which help in scheduling tasks, generating time delays and
timestamping events by CPU. USB Serial allows serial communication with external devices.

The microcontroller's CPU is in charge of carrying out the operating system and application code. It
coordinates the actions of every other part of the system.

Cryptographic Accelerator: A specialized hardware component made to effectively carry out encryption and
decryption operations, greatly boosting the system's overall security and performance of cryptographic
duties. The details of the cryptographic accelerator are still under development and will be added in future
deliverables. Accelerating other primitives like the Data Encryption Standard (DES) and 3DES in addition
to AES is under evaluation.

Communication Interfaces: These consist of a secure Wi-Fi interface, which allow the microcontroller to
connect to different networks and gadgets in the ecosystem of smart homes. The cryptographic accelerator
makes secure communication easier.

3.5.5.5 Clocking Strategy

Clock signals act as the beating heart that synchronizes the activity of several components in a
microcontroller architecture. For the integration of a secure RISC-V microcontroller module, especially one
with cryptographic capabilities for smart home applications, the following kinds of clock signals are taken
into account:

1. Main System Clock:

a) Source: May come from an external source or is often produced by an on-chip oscillator.

b) Purpose: The timing for instruction fetch, decode, execute, and write-back cycles is provided
by it, which powers the CPU core.

c) Frequency: Depending on the power limitations and performance requirements, it usually
spans a few MHz to GHz.

2. Peripheral Clocks:

a) Source: Obtained from either independent oscillators or the main system clock.

b) Purpose: Numerous peripheral interfaces, including SPI, I2C, UART, and others, use these
clocks. They can frequently be lowered from the primary clock in order to conserve energy or
satisfy the peripheral's timing needs.

c) Frequency: Typically, lower than the system clock to accommodate the particular peripheral's
requirements.

3. Cryptographic Accelerator Clock:

a) Source: It may be the cryptography unit's own dedicated clock or the same as the main system
clock.

b) Purpose: The efficient and timely execution of cryptographic operations is guaranteed by this
clock. The cryptographic accelerator can function independently of the CPU core when it has
its own clock, which is advantageous for carrying out cryptographic operations in the
background.

Deliverable D3.1 ISOLDE Page: 152

D3.1 ISOLDE - public 17.05.2024

c) Frequency: When processing cryptographic methods quickly is important, it must be set high
enough. However, it can also be set to power-saving modes.

3.5.5.6 Reset Strategy

The reset signal in a microcontroller system is essential for guaranteeing that the system boots up in a
known condition. The following describes the common reset signals used in RISC-V microcontroller
modules, along with the module's actions during a reset:

1. Power-On Reset (POR):

a) Activated upon microcontroller power-up.

b) Guarantees that, prior to the CPU beginning execution, all registers and states are initialized
to their default settings.

2. External Reset:

a) A specific pin on the microcontroller that is often activated by an outside source.

b) Used by external watchdogs or for manual resets.

3. Software Reset:

a) Caused by the microcontroller's software, frequently by writing to a particular register.

b) Can be used to force a software restart of the system in the event of an unrecoverable error.

Behavior During Reset

1. Core CPU:

a) The CPU halts the execution of commands.

b) The reset vector address, which is usually the beginning of the bootloader or original firmware,
is where the program counter is set.

c) The initial state of the CPU registers is set.

2. Memory:

a) RAM and registers that are volatile are wiped or reset to their initial settings.

b) Non-volatile memory, such as Flash, does not alter.

3. Communication Interfaces:

a) Any active transactions are stopped when serial ports, network interfaces, and other
communication modules are reset.

4. Cryptographic Accelerator:

a) Cryptographic activities that are in progress are terminated.

b) To stop leaks, sensitive data in registers and cryptographic keys should be purged.

5. Clock System:

a) The clock system is reset, which can entail turning off internal oscillators or putting clock
multipliers and divisions back in their initial settings.

The RISC-V microcontroller's particular implementation and configuration will determine the precise
behavior. Additional precautions are taken in secure applications to guarantee that resets do not jeopardize
the device's security status and that sensitive data, including keys, are sufficiently safeguarded even during
reset procedures.

Deliverable D3.1 ISOLDE Page: 153

D3.1 ISOLDE - public 17.05.2024

3.6 Signal Processing, Neuromorphic and Application-
Specific Instruction Set Processors (ASIPs)

Task 3.6, M3-M33, Task Leader: CODA

Task 3.6 of the ISOLDE project focusses on three main areas of interest. The first area is an application
specific instruction set processor focused on motor control partially developed by cooperation of NXP-CZ,
CODA and BUT. NXP-CZ uses their highly valued SW expertise to provide the source code of the real
application snippets which are profiled by the CODA tools and the results of the profiling are used to drive
the tailoring process of the baseline RISC-V CPU. BUT performs Power, Performance, and Area (PPA)
analysis of the developed IP and uses the result of the analysis to provide feedback during the
implementation phase.

The second area of interest is the signal processing domain. IMT and ACP are implementing domain
specific accelerators of the FFT/iFFT algorithms.

The third area of interest is neuromorphic computing. POLITO is working on the integration of their
neuromorphic accelerator into the RISC-V framework.

IP
Lead

Beneficiary
Type Domain Dependencies Licensing

FFT IMT Algorithm
Signal
processing

None
Restrictive
open source
(GPL-3.0)

LDPC ACP Core
Signal
processing

Previous parts of
receive chain
(synchronization,
FFT,
equalization, LLR
extraction)

Proprietary

Motor Control
Accelerator

CODA Core Motor Control
CODA
background IP

Proprietary

Neuromorphic
HW
Accelerator

PoliTo Core
Neuromorphic
computing
acceleration

CVA6, AXI
Permissive
open source
(SHL, MIT)

SCA ACP Core
Signal
processing

RF transceiver Proprietary

Table 3.6-1: Overview of contributions in Task 3.6

https://github.com/openhwgroup/cva6
https://developer.arm.com/Architectures/AMBA

Deliverable D3.1 ISOLDE Page: 154

D3.1 ISOLDE - public 17.05.2024

3.6.1 Fast Fourier Transform Algorithms for SIMD and Vector
Accelerators (FFT) – IMT

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors.

3.6.1.1 General Information

The FFT is widely used in signal processing and numerical simulations. For example, it can be used to
accelerate the convolution of two arrays with application to finite impulse response (FIR) filtering.

There are many algorithms for FFT, most of them variants of the Cooley-Tuckey algorithm. The total number
of arithmetic operations (additions/subtractions and multiplications) for these algorithms is close to 5 N
log2(N), where N is the length of the array (and a power of 2). For modern CPUs, there is almost no
difference in latency and throughput for additions /subtractions and multiplications. However, for hardware
implementation, a multiplier, especially for floating point, is rather complex and large.

The split-radix FFT reduces the total number of operations to 4 N log2(N), and this was for a long time the
best possible result. A recent improvement has given a slight reduction in the number of arithmetic
operations with the constant 4 reduced to 34/9=3.78. However, this new algorithm has proven difficult to
implement and numerically unstable.

To accelerate the FFT one can use either parallel or vectorial acceleration. For the many variants of the
Cooley-Tuckey algorithm, one can find some which are better for one type of acceleration, and in many
cases, they each have a transpose form which is good for the other type of acceleration. However, for the
split-radix FFT, there are much less variants, and it is not clear which one is best suited for parallel or
vectorial acceleration.

3.6.1.2 Purpose and Scope

We propose a split-radix FFT algorithm for arrays of floating-point values with lengths a power of 2, adapted
for SIMD-type vectorization. The algorithm is rather flexible and can be easily adapted to various SIMD
accelerators or to a hardware implementation. The biggest limitation is related to the number of values V in
a SIMD vector, and the algorithm is practically limited to relatively small values of V (2,4,8,16).

The proposed split-radix FFT algorithm is recursive, decimation-in-frequency, in-place, with scrambled
output and precomputed roots of unity. It uses optimally an existing cache (or buffer) without any knowledge
of its size, due to the recursive nature (it works recursively on smaller and smaller parts of the original array,
until the part fits in the cache). For real arrays it is still in place and twice as fast as the complex version. A
scalar implementation was proposed by D.J. Bernstein [Bernstein1999]; our proposal is practically the
SIMD vectorization of this scalar version.

For the case of large values of V, like in the RISC-V vectorial extension, the optimal FFT algorithms are
more akin to those invented in the last century for various vector processors. We also explore a split-radix
version suited for this case.

We have also developed an FFT algorithm that can be used for fixed point arrays, to calculate the
convolution of two real-valued arrays with fixed-point values. Compared to the usual FFT fixed point
implementations that mimic the floating-point algorithms and loose around log2(N)/2 bits of precision, where
N is the length of the arrays, we calculate the convolution without any loss of precision, like a fused
operation (with the entire convolution fused). We start by interpreting the fixed-point values as integers, and
then do the convolution as the multiplication of two polynomials with integer coefficients. At the end we
obtain the desired convolution with integer values (but with a larger width), and the user can reinterpret
them as fixed-point values as needed. For example, for two arrays of length 32768 = 215 with 24-bits fixed-
point values, we obtain the exact convolution as integers with 15+24+24=63 bits (actually 64bit integers).
The user can then reduce each coefficient to the desired fixed-point width (24 or larger). The multiplication
of two polynomials is done using Number Theoretic Transforms (NTT), as we proposed in Task 3.5 for

Deliverable D3.1 ISOLDE Page: 155

D3.1 ISOLDE - public 17.05.2024

cryptographic applications (Section 3.5.3). Note that if implemented in hardware, such NTT accelerator
could be used both for cryptography and for signal processing.

3.6.1.3 Place in the System

The FFT algorithms we propose can be used in two ways. First, they can be used as software algorithms
taking advantage of various extensions to RISC-V (vectorial extension, SIMD extension). Second, they
cand be implemented in hardware as a memory-mapped accelerator attached to a system bus such as
AMBA AXI, with the CPU or a Digital Signal Processor attached to the CPU by a dedicated interface offloads
the FFT and its inverse as needed.

3.6.1.4 Block Diagram

SIMD (small vector) FFT split radix algorithm and implementation

Figure 3.6.1.4-1: FFT - Decimation in frequency split radix step interpreted as polynomials transforms. The 4n step is
reduced to one 2n step and two n steps. Note the twisting of the polynomial coefficients using roots of unity and their
inverse (conjugates).

Figure 3.6.1.4-1 shows the decimation in frequency split radix 2/4 algorithm, presented as a series of
polynomial transformations that calculate from a given residue modulo X4n-1, the residues modulo of smaller
degree polynomials [Bernstein2007]. Note that after such a step, one can apply recursively the same step
to smaller degrees polynomials.

Deliverable D3.1 ISOLDE Page: 156

D3.1 ISOLDE - public 17.05.2024

Figure 3.6.1.4-2: FFT - In-place implementation for complex input

Figure 3.6.1.4-2 shows an in-place implementation for complex input. Note that SIMD-like parallelism is
easy to implement if each complex input contains V contiguous values. However, this easy parallelism
stops once the degree of the polynomial is less than V. A solution for this challenge is presented later.

Figure 3.6.1.4-3: FFT - Possible hardware implementation

The diagram in Figure 3.6.1.4-3 shows the split radix algorithm, adapted for a hardware implementation.
The 2/4 split radix block operates on 4 complex numbers, or 8 real numbers and outputs also 4 complex/8
real numbers. Being in-place, the output is written back to the same memory locations as the input.
Therefore, we need 8 registers for input and output. The two supplementary input registers are needed for
one complex root of unity which is precomputed. Compared to the classical split-radix algorithm, which
needs two roots of unity, the second being the cube power of the first, we use the trick proposed by
Bernstein [Bernstein1999] that replaces the cube with the conjugate of the root. Note that this will alter the
output order, but this does not affect a convolution.

Deliverable D3.1 ISOLDE Page: 157

D3.1 ISOLDE - public 17.05.2024

Inside the 2/4 split radix block we have some classical +/- butterflies (without multiplication) and a new type
of butterfly called a twister (its operation is shown in the diagram). The V represents the number of values
on which we operate in parallel (for example the number of values in a SIMD array). To accelerate the
computations, we apply all butterfly operations on V values in parallel. For a hardware implementation, one
could choose to increase the number of twisters working in parallel or use less twisters with a pipeline
approach.

The same approach can be used for the same value of V if there are more registers available. For example,
a 4/8 split radix block uses 8 complex values as input and two complex roots, needing 16+4 input registers
and 16 output registers. Again, each operation applies on V values in parallel and may be interpreted as
an “horizontal parallelism”.

The algorithm must stop when we reach a level of V, as now the horizontal parallelism should be done
inside a V-long vector. A simple solution is to stop the split radix steps much earlier, at the V2 level, and
transform the horizontal parallelism to a “vertical” one by transposing each V2 contiguous chunk as a matrix.
Then one can continue to the lower levels by applying the same split-radix pass to V different vectors, each
with length V.

Finally, let us note that we need a separate implementation for the inverse FFT transform, as we cannot
reuse the direct FFT due to the scrambled output. The inverse pass is the transpose of the direct one, going
back from the output to the input of the direct pass.

Finally, for a real array, one can simply discard the second complex number generated by a twister, as it is
exactly the complex conjugate of the first complex number. For a hardware implementation one could use
the same split-radix block with an inactivated path to reduce the consumed power.

Compared to [Bernstein1999] where a real array needs an initial permutation (2 x N/2 -> N/2 x 2), we
propose a new algorithm for real arrays that requires no permutation, with some penalization in memory
access (doubling the number of channels) which can be absorbed by caching or other means.

Vector FFT split radix algorithm

Figure 3.6.1.4-4: FFT - Diagram showing a possible hardware implementation for large values of V.

For large values of V (SIMD vector length), we need a completely different approach for vectorizing the
FFT, as stopping at the V2 level is not practical (as V2 could be much larger than the length of the array).

There are several approaches possible. In [Kwong2012], Kwong and Goel propose a constant geometry
architecture for the split radix FFT, by interpreting it as a radix-2 FFT where some twiddle coefficients are

Deliverable D3.1 ISOLDE Page: 158

D3.1 ISOLDE - public 17.05.2024

trivial. Then they apply the usual Pease algorithm (parallelizing the radix-2 FFT) to obtain the sought after
constant geometry architecture. Then they propose a hardware implementation copying the Pease radix-2
FFT, with no gain in throughput or latency. However, they propose to use clock-gating to save power when
the twiddle factors are trivial. Note that this approach was patented by Texas Instruments in 2011,
[Kwong2013].

The dual algorithm for the Pease algorithm is called Korn-Lambiotte and is a constant geometry radix-2
algorithm suitable for vector processors (see [Franchetti2011]). It was recently used in [Vizcaino2023] for
long vector architectures, including the vectorial extension for RISC-V.

Our proposal is to adapt the Korn-Lambiotte algorithm from the radix-2 algorithm to the split-radix one. First,
the SIMD-type split radix recursive algorithm introduced before can still be used down to a level 4V (using
also some radix 2 steps as the last ones). However, at that level the entire array enters in a couple of
registers of length V. From this level down to level 1, we do not need to write back intermediate results to
memory, but all calculations can be done inside the registers. The diagram in Figure 3.6.1.4-4 shows four
vectors of length V – each holding half of the V values, either real or imaginary parts. At every step, we
apply a split radix 2/4 to the vectors, together with some in-vector permutations and the results are saved
in new vectors. All roots of unity enter in a single vector (real and imaginary parts, as only 2V/4 roots are
needed for the first 2V step). At each step we also recalculate a new vector of roots of unity, by deleting
some roots, duplicating others and applying some permutations. Another solution is to use at every step a
different precomputed vector with correct roots of unity, read from memory.

Compared to a vector radix 2 algorithm, the split-radix 4 needs the same number of steps, log2(2V).
Contrary to [Kwong2012], where the same steps from radix 2 were used for split-radix 2/4 with a gain in
power for trivial twiddles, in our approach the steps for the split-radix 2/4 are exactly the same as for the
scalar case. However, note that after log4(2V) steps, some of the values in each vector are already the
final ones and should not be changed in further steps. One idea is to push these values to the end of the
vector at each step and mask them so that subsequent steps do not affect them. The efficiency of this
approach will largely depend on the implementation of masked vector operations and will give some gains
compared to vectorial radix 2 algorithms only if these masked operations have lower latencies or higher
throughput. A better solution is to use a polymorphic memory, as proposed in [Ciobanu2018]. In this case,
we can reduce the length of the vectors at each step as needed, retaining only the values that still need to
be acted on, thus decreasing the latency, and at the same time start moving the finished values back to
memory. Note that such a polymorphic memory will be developed in this project by IMT (Section 3.2.3), and
we intend to check it for vectorized FFTs with large values of V.

Fixed point convolution using number theoretic transforms (NTT)

This algorithm has been presented in Section 3.5.3 as the NTT for post quantum cryptography. There are
two variants, a large prime one using 64bit integers and another one based on residue arithmetic using
16bit integers. Both give the same end result.

The idea of using number theoretic transforms for convolution of real vectors is not new. One advantage is
that the algorithm is intrinsically adapted to real values, without the need of steps for complex arrays and
with real roots of unity. Other advantages are described below for the case of fixed-point values.

We start by interpreting the fixed-point values as unsigned integers. Then we can do the convolution defined
as the multiplication of two polynomials with integer coefficients via NTT, as described in detail in Section
3.5.3. The end result is the desired convolution with integer coefficients with larger width, without any loss
in precision (perfectly exact solution). For example, for two arrays of length 32768 = 215 with values fixed-
point with 24 bits, we obtain the exact convolution as integers with 15+24+24=63 bits (actually 64-bit
integers). The user can then reduce each coefficient to the desired fixed-point width.

Note that if implemented in hardware, such an NTT accelerator could be used both for cryptography and
for signal processing.

Deliverable D3.1 ISOLDE Page: 159

D3.1 ISOLDE - public 17.05.2024

3.6.2 Low Density Parity Check Decoder (LDPC) – ACP

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors.

3.6.2.1 General Information

Low density parity check (LDPC) codes are linear block channel codes defined by a sparse parity check
matrix. Due to the superior error correcting performance and high degree of parallelization, they have been
adopted and used in many wired and wireless standards.

Among the different type of LDPC codes, quasi-cyclic (QC) LDPC codes are very popular as they enable
an efficient hardware implementation for both the encoder and the decoder. The 5G New Radio (NR) LDPC
code is a (systematic and irregular) QC-LDPC, designed for a peak throughput 20 Gbps and has two base
graphs, BG1 and BG2, that can be expanded to support various code rate and block length by changing
the lifting factor.

3.6.2.2 Purpose and Scope

Different hardware architectures for LDPC decoders have been proposed to meet the power and throughput
requirements of various standards. Among those, various degrees of resource sharing yield flexible
decoders with varying area requirements. For this project's purpose, we opted for row-parallel architecture
as it strikes the balance between area and the decoder throughput. In this architecture, multiple rows of the
parity check matrix are processed in parallel, enhancing throughput. The degree of parallelization offers
flexibility to trade throughput for area, as the required decoder throughput may vary depending on preceding
signal processing blocks. Additionally, this architecture must support both base graphs and various
combinations of lifting factors and block lengths.

3.6.2.3 Place in the System

The LDPC decoder is placed in the baseband domain of the IoT demonstrator together with other baseband
accelerators and memories as shown in Figure 3.6.2.3-1. The processor domain that executes the protocol
stack is in control of the baseband domain and configures, starts, and stops the different accelerators at
the right time.

The LDPC decoder is controlled via the baseband controller block, where a corresponding command is
sent to the decoder indicating a decoding task. The decoder starts the decoding by fetching the code blocks
LLRs (logarithmic likelihood ratios, a common term used in communications) stored in the LLR buffers and
writes the results into Tightly-Coupled Data Memory (TCDM).

Figure 3.6.2.3-1: LDPC - System integration

Deliverable D3.1 ISOLDE Page: 160

D3.1 ISOLDE - public 17.05.2024

3.6.2.4 Block Diagram

The LDPC decoder is designed to decode the NR QC-LDPC code and supports both base graphs which
enable it to handle a large range of transport block sizes (TBS) and code rates. It is designed with a row-
parallel architecture and supports the different lifting sizes as required by the standard.

The LDPC decoder is designed with a row-parallel architecture with a penalization factor of p, as illustrated
in Figure 3.6.2.4-1. It consists of p internal LLR memories and p decoder functional units (DFU). The internal
LLR memory provides Q-massages to the DFUs via the distribution network, where in the DFUs check
node, variable node, LLR operations are performed. Each DFU has a local memory to store the resulting
R-massages, which are feedback to the LLR memories via the gathering network.

At start, the LLRs are loaded into internal LLR memories and each hardware iteration processes p rows of
the parity-check matrix. For example, for p=32 and Z=384, each Z rows (1 row of the base graph) is
processed via 12 iterations. At the end, the decoded LLRs (or their sign bit) are loaded from the internal
LLR memories into TCDM.

Figure 3.6.2.4-1: Internal Organization of the LDPC decoder with p parallel functional decoding units

3.6.2.5 Interfaces

The LDPC decoder has three interfaces and one interrupt line to indicate completion of a block decoding.
The interrupt is connected to the processor's main interrupt controller and can be used to start subsequent
processing.

Direct Memory Interface

The LDPC decoder has access to the accelerator TCDM through a dedicated interface. The decoder can
read and write data to the TCDM. Processors, or other accelerators can then further process the results by
accessing the TCDM.

LLR Buffer Interface

The LDPC decoder has access to the LLR buffer through a dedicated interface. The decoder can load input
LLRs accumulated with Hybrid Automatic Repeat Request (HARQ) into its internal memory for each
decoding iteration. The buffer is shared with a Turbo decoder that is used for a different protocol standard,
but two decoders will not run concurrently.

APB Configuration Interface

Deliverable D3.1 ISOLDE Page: 161

D3.1 ISOLDE - public 17.05.2024

The APB interface is used to configure, start, and stop the accelerator and is connected to the main bus of
the baseband processor.

3.6.2.6 Clocking Strategy

The LDPC decoder is part of the digital baseband and clocked by the digital baseband clock.

3.6.2.7 Reset Strategy

The LDPC decoder is part of the digital baseband and can be reset asynchronously together with the rest
of the digital baseband after power up.

3.6.2.8 Power Management Strategy

The LDPC decoder can be powered down with the rest of the digital baseband while leaving the processor
domain on. This is typically the case when the chip is not connected to the base station or during DRX, or
PSM cycles.

3.6.2.9 Debugging Strategy

The LDPC decoder’s Finite State Machine (FSM) cannot be interrupted by the debugger, but the number
of iterations can be adjusted such that decoding results can be investigated after each iteration. In addition,
the internal state of the decoder can be observed through the APB interface.

Deliverable D3.1 ISOLDE Page: 162

D3.1 ISOLDE - public 17.05.2024

3.6.3 Motor Control Accelerator – CODA

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors.

3.6.3.1 General Information

The IP proposed by CODA targets the automotive domain. NXP-CZ provides the Model Predictive Control
algorithm that needs to be profiled. Based on the preliminary analysis of the algorithm, a 9-stage application
class processor was selected to be the main core of the CODA accelerator. Further profiling and
performance analysis will be used to identify the extension(s)/customization(s) for the processor to improve
its performance to meet the control algorithm needs.

3.6.3.2 Purpose and Scope

The purpose of the IP developed by CODA is to demonstrate the usability of RISC-V CPU cores for
computationally intensive applications in the automotive domain. CODA uses the Codasip Studio tool to
tailor an existing RISC-V processor to effectively support the selected control application. The used RISC-
V processor contains partial support of the Vector extension. The IP by CODA implemented as part of the
ISOLDE project, further reported as foreground IP, will further enhance the existing implementation of
Vector extension to be fully compliant or compatible with the RISC-V Vector extension (RVV)
specification [RVI2021] and further tailor the processor by adding additional functionality and instructions
necessary for the control application.

3.6.3.3 Place in the System

One of the most complex parts of model predictive control is the quadratic solver used to find the optimal
solution for the motor control problem. The quadratic programming solver provided by the NXP-CZ will be
the central part of the system. Codasip’s 9-stage application processor will run the solver as well as any
other software task. The processor contains a customizable application RISC-V core. Based on the profiling
result, the new instruction(s) will be introduced into the ISA by CODA and their micro-architecture
implemented accordingly. The foreground IPs developed by CODA as part of the ISOLDE project will be

tightly connected with the background IPs, such as the existing baseline A73014 CPU and/or VPU. The
foreground IP may be considered another customization of the A730 CPU. The tight interconnection
between foreground and background IPs provides important performance benefits and simplifies the
design.

The use of the developed foreground IP with a different processor is not recommended since the foreground
IP is being developed as the customization of the baseline CODA processor and therefore makes a
significant amount of assumption about the processor. The baseline CPU can be connected to a host
processor by a standard interface (such as AXI), or it can be used to run any standard RISC-V workload in
addition to the accelerator task and remove the need of the host CPU from the system. In such a case, the
AXI interface would be used to connect the CPU to the required peripherals.

14 https://codasip.com/products/application-risc-v-processors/a730/ 

Deliverable D3.1 ISOLDE Page: 163

D3.1 ISOLDE - public 17.05.2024

Figure 3.6.3.3-1: Motor Control Accelerator - Position in the system

Figure 3.6.3.3-1 demonstrates the position of the IP developed by CODA in a generic exemplary system-
on-chip in a stand-alone configuration. The foreground IP is depicted by a shaded box in green color and
is placed inside the background IP depicted by the gray to symbolize that the foreground IP is connected
only to the background IP. The CODA A730 is just one part of the system connected by the AXI4 interface.
The A730 may be used to control all remaining subsystems, or it can be controlled by another CPU
depending on the system architecture.

3.6.3.4 Block Diagram

The block diagram in Figure 3.6.3.4-1 describes Codasip's approach to the design of the accelerator. The
boxes shaded in gray depict components considered the background IP that will be provided by the CODA
to evaluate foreground IP but will not be developed as part of the ISOLDE project. The green shaded
components describe the foreground IPs that may be developed as part of the CODA contribution. If the
customization for the specific step is implemented depends on the profiling results. The dark green
represents the decoding of the new instructions and the execution of these instructions.

Deliverable D3.1 ISOLDE Page: 164

D3.1 ISOLDE - public 17.05.2024

Figure 3.6.3.4-1: Motor Control Accelerator - CODA CPU tailored motor control domain

3.6.3.5 ISA

The CODA processor IP blocks are written in the Codal3 language, a high-level language used to
automatically generate both the Software Development Kit (SDK) and Hardware Development Kit (HDK).
The SDK contains the C compiler with assembler and instruction accurate simulator while HDK contains
the RTL representation of the customized processor.

As can be seen in the block diagram in previous section, the CODA customization only adds new
functionality and never removes already existing functionality. Therefore, CODA can guarantee that any
functionality existing in the background IPs will remain unchanged and therefore standard RISC-V code is
binary compatible. However, if the standard binary code is run on the customized processor, the new
instructions will not be used and therefore the customization performance benefits will be lost.

The best way to approach this problem is to compile the application from the C code. The customized
compiler automatically generated by CODA tools will be able to use new instructions to achieve the best
performance.

The exact functionality of the custom instruction will be known based on the result of the profiling done by
CODA, which will be repeated during the whole implementation phase. Any introduced custom instruction
will be compliant with RISC-V specification.

3.6.3.6 Interfaces

The HW interfaces between the newly developed IPs and already existing IPs are automatically generated
during the HLS synthesis from the Codal3 language.

The A730 CPU core is connected by the AXI4 interface.

3.6.3.7 Clocking Strategy

The newly implemented IP will be connected to the processor core by the automatically generated interface.
It is recommended to use existing IPs provided by CODA to integrate into the system. Therefore, this section
will describe the clocking strategy of the A730 processor core instead of the newly developed IP itself.

Deliverable D3.1 ISOLDE Page: 165

D3.1 ISOLDE - public 17.05.2024

The A730 contains three main clock domains which are all driven by the single clock pin CLK. Each of the

clock domains has its own CLK_EN pin. The following table contains the list of the enable signals together

with a brief description.

Signal Name Description

MEMSYS_CLKEN Controls the memory management clock
domain. Memory management system is shared
between multiple processor cores in case of
multicore configuration.

DBG_CLKEN Controls the debug clock domain. Debug
subsystem is shared between all cores in the
multicore configuration.

CORE_CLKEN[n] Controls the clock domain for the processor
core. Each core has its own clock enable signal
in case of multicore configuration.

Table 3.6.3.7-1: Motor Control Accelerator - List of the enable signals together with a brief description.

The foreground IP will be tightly connected with the processor pipeline and as such will operate on the core
clock of the given core. In the case of the multicore configuration, each core will instantiate its own
foreground IPs.

3.6.3.8 Reset Strategy

The resets of the CODA foreground IPs will be tightly coupled with the reset of the processor pipeline. Since
the A730 core is the recommended IP, this section describes the reset process of the A730.

Signal Name Polarity Description

MEMSYS_RST Active low Reset for memory subsystem.

DBG_RST Active low Reset for debug subsystem

CORE_RST Active low Reset signal for the core. Each core in the multicore system has its
own reset.

Table 3.6.3.8-1: Motor Control Accelerator - Reset of the A730

The foreground IP implemented as part of the ISOLDE project will be using CORE_RST since it is connected

to the CPU core.

3.6.3.9 Debugging Strategy

All background CODA IP implement debug strategies described in the RISC-V specification. The
foreground IP will continue in this trend and all additional functionalities will be accessible from the debug
manager implemented according to the RISC-V External Debug Support [Donahue2024].

Deliverable D3.1 ISOLDE Page: 166

D3.1 ISOLDE - public 17.05.2024

3.6.4 Neuromorphic HW Accelerator – POLITO

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors.

3.6.4.1 General Information

Neuromorphic computing is a research field where Spiking Neural Networks (SNN), also called third
generation neural networks, are explored to overcome the limitations of traditional Von Neumann
architectures. SNNs represent a subset of AI applications that take inspiration from the human brain by
emulating biological neurons and synapses for data processing and transfer, enabling event-driven, fault-
tolerant computation with low latency and high parallelism, thanks to the proximity of memory and
processing units.

3.6.4.2 Purpose and Scope

Following the growing interest in SNNs, we want to demonstrate how neuromorphic systems can perform
well in computation from the point of view of power efficiency, latency and parallelism. The flexibility given
by the RISC-V ISA and FPGAs allows the creation of digital/neuromorphic prototyping platform where edge
and low latency computation from the neuromorphic accelerators is complemented by the control of a digital
processor.

3.6.4.3 Place in the System

Figure 3.6.4.3-1: Neuromorphic HW Accelerator - Place in the system

In Figure 3.6.4.3-1 we report the high-level architecture of our HW. The high-speed AXI protocol will allow
fast reconfiguration of the accelerator and delivery of input data encoded in spikes. Internal BRAM
memories available on the FPGA are used by the packet encoder to store sample batches and by the
neuromorphic HW to store networks weights and neuron statuses. However, this memory type offers limited
capacity. Hence, for larger datasets an external, larger, memory will be used to store all the data that will
be progressively offloaded to the accelerator.

Deliverable D3.1 ISOLDE Page: 167

D3.1 ISOLDE - public 17.05.2024

3.6.4.4 Block Diagram

Figure 3.6.4.4-1: Neuromorphic HW Accelerator - Block diagram

The behavior of the neuromorphic accelerator can be controlled via a dedicated set of parameters that are
stored internally in a dedicated register file (CONF REGISTERS in picture 3.6.4.4-1) operated by a
CONTROLLER, which oversees delivering the network configuration to the SNN. Moreover, internal RAM
elements are used to store weights and neuron statuses: They are accessible from the outside through a
SPI-controlled device for writing or reading.

The possibility to instantiate the accelerator as a multicore architecture is to be investigated. In that case,
a Scheduler (SCH) unit shall be introduced that handles spikes between cores.

The accelerator’s operations are managed by a main FSM inside the SNN logic unit. It receives input spikes,
computes the evolution of the network by implementing the behavioral neuron logic (mostly Leaky-
Integrate-and-Fire - LIF) and (optionally) implements online learning through the configurable WEIGHT
UPDATE unit.

The SNN OUTPUT LOGIC unit elaborates the output of the network and provides the inference results.

3.6.4.5 Interfaces

AXI

The AXI bus can be used to communicate the input data to the accelerator or the network configuration
when it’s necessary to implement a new design for a different use-case.

SPI

The SPI bus is used to access the memory elements internal to the accelerator, probably through an AXI-
to-SPI bridge to allow the utilization of one unique transfer protocol from the main Host.

3.6.4.6 Clocking Strategy

Main clock signal of the system, autonomous time ticks’ generation for event-based computing.

Deliverable D3.1 ISOLDE Page: 168

D3.1 ISOLDE - public 17.05.2024

3.6.5 Shared Correlation Accelerator (SCA) – ACP

Part of Task 3.6 Signal processing, neuromorphic and application-specific instruction set processors.

3.6.5.1 General Information

In cellular wireless communication, it is necessary to align the timing and frequency references of the user
equipment (UE) and base station (BS). This is necessary both during initial synchronization, when the
connection is first set up, and after the UE exits low-power sleep modes. If the UE uses a low-cost crystal
oscillator or the cell is operating in a high-frequency band, the initial frequency error can be substantial. To
correct for this, the BS regularly transmits one of several known synchronization sequences. The UE then
looks for these sequences using either low-complexity auto-correlation or cross-correlation approaches
[Hazy1997]. The cross-correlation method is preferred for its superior performance but comes at a heavy
computational cost.

The cross-correlation approach involves computing the cross-correlation of the received signal with the
possible synchronization sequences over all time offsets [Kroll2017, Lippuner2020]. Additionally, this
process needs to be repeated for a grid covering the range of the possible frequency offsets. Accordingly,
the computational effort scales linearly with the maximum possible frequency error, which in turn scales
with the maximum carrier frequency. We estimate the required correlation throughput at 81 Mcorr/s (million
correlations per second) for LTE. For 5G NR Frequency Range 1 (FR1), the required throughput rises to
230 Mcorr/s due to the higher bandwidth and carrier frequency.

3.6.5.2 Purpose and Scope

The purpose of the Shared Correlation Accelerator (SCA) is computing the cross-correlations for the
synchronization for a modem that supports both LTE and NR FR1. The SCA shall compute these
correlations in real time, as storing the received samples for a longer duration is not feasible. If the cross-
correlations are naively computed in time-domain, this would correspond to 470 Gop/s. A better approach
is computing the cross-correlations in the frequency domain using the Overlap-Save method [Kroll2017,
Lippuner2020]. With this approach, the complexity can be reduced to approximately 13 Gop/s. While still
substantial, this is achievable using a dedicated hardware accelerator.

Additionally, the SCA shall also handle the accumulation of the correlation values in a shared TCDM. It
shall also detect if a sequence has been found, allowing for early termination in that case.

3.6.5.3 Place in the System

The SCA is a part of the Digital Base Band (DBB). It is controlled by the software running on the processor
cluster via an APB register set as shown in Figure 3.6.5.3-1. It is able to directly receive IQ samples from
the RF transceiver and gets timing information from the DBB timekeeping unit. It has high-bandwidth access
to the local TCDM, where the correlation results are stored and accumulated. Once processing is
completed, an interrupt is raised on the processor cluster.

Figure 3.6.5.3-1: SCA in the DBB controlled over APB from a processor cluster.

Deliverable D3.1 ISOLDE Page: 169

D3.1 ISOLDE - public 17.05.2024

3.6.5.4 Block Diagram

Figure 3.6.5.4-1 shows the architecture of the SCA. The SCA primarily relies on a streaming length-2048
FFT unit. It is used to transform both the correlation sequences and received samples to the frequency
domain. After the correlation is computed using multiplication in the frequency domain, the FFT is used
again to transform the correlation results back to time domain. A sample buffer at the input stores the
incoming samples and absorbs the uneven consumption rate of the correlator. The final accumulation block
decimates the time-domain correlation results and accumulates them in the TCDM.

Figure 3.6.5.4-1: SCA architecture with sample buffer, streaming FFT and accumulator

3.6.5.5 Clocking Strategy

The SCA and its coupled memory use a single synchronous clock provided by the DBB.

3.6.5.6 Reset Strategy

An asynchronous reset is used to initialize the SCA after power on. A separate, synchronous clear can be
used to return to the initial state. In the initial state, the SCA waits to be configured by the processor
software.

3.6.5.7 Power Management Strategy

The SCA utilizes clock gating to reduce power consumption and the SCA can be powered down together
with the rest of the DBB when no data reception is required.

3.6.5.8 Verification Strategy

The SCA is primarily verified against a bit-true software model in a stand-alone testbench, which enables
full insight into the block. Additional observability in-system is provided by exposing the internal state using
APB registers.

Deliverable D3.1 ISOLDE Page: 170

D3.1 ISOLDE - public 17.05.2024

4 Conclusion
This deliverable provided initial architecture definitions for the hardware modules and extensions to be
developed within WP3 (Accelerators and Extensions) of the ISOLDE project, building on the previously
defined initial demonstrator and hardware module requirements (Deliverable D1.1 and D1.2). The initial
architecture definitions include details about each component's purpose and preliminary information about
its design (placement in the system, functional description, interfaces, and strategies for clocking, resetting,
power management, and debugging). The deliverable structure follows the tasks defined in WP3 to make
it easier to relate the presented content and technical progress with the project proposal.

Based on this document, the related work packages WP2 (providing the foundational cores), WP4
(developing the necessary software support for using the hardware extensions), and WP5 (combining the
foundational cores with selected hardware extensions creating diverse demonstrators) gain more insight
about the developed hardware extensions and modules. Hence, this deliverable is crucial for further
collaboration between these work packages and ISOLDE's goal to create high-performance processing
systems.

Regarding WP3, this deliverable will act as a starting point for subsequent deliverables covering the
prototype and final implementations of the hardware extensions (D3.2, D3.3 in M24 and D3.4, D3.5 in M33).

Deliverable D3.1 ISOLDE Page: 171

D3.1 ISOLDE - public 17.05.2024

5 Acronyms and Definitions
Acronym Description

ACC-BIKE ACCelerator for post-quantum key encapsulation mechanism BIKE

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AHB Advanced High-performance Bus

AI Artificial Intelligence

ALU Arithmetic Logic Unit

AMA AI/ML Accelerator

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASCON Lightweight authenticated block cipher

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processor

ASLR Address Space Layout Randomization

AXI Advanced eXtensible Interface

AXI-MM AXI Memory Mapped

AXIS AXI Stream

BCFI Backward-Edge Control Flow Integrity

BRAM Block RAM

BS Base Station

CA-PMC Context-Aware Performance Monitor Counter

CA-PMC-IF Context-Aware PMC Interface

CBD Contract Based Design

CCS Contention Cycles Stack

CE Computing Element

CFI Control Flow Integrity

CNN Convolutional Neural Network

CORDIC Coordinate Rotation Digital Computer

COP Call-Oriented Programming

CPU Central Processing Unit

CPS Cyber-Physical Systems

CSR Control and Status Register

Deliverable D3.1 ISOLDE Page: 172

D3.1 ISOLDE - public 17.05.2024

CTM Cryptographically Tagged Memory

CV-X-IF Core-V eXtension Interface

DBB Digital Base Band

DDR (SDRAM) Double Data Rate Synchronous Dynamic Random Access Memory

DES Data Encryption Standard

DFT Discrete Fourier Transform

DFU Decoder Functional Units

DMA Direct Memory Access

DMR Dual Modular Redundancy

DSP Digital Signal Processor

DSS Digital Signature Schemes

DVS Dynamic Vision Sensor

ECC Error Correction Code

EMI Enclave Memory Isolation

ECNNA Event-based CNN Accelerator

EXP EXtension Platform

FCFI Forward-edge Control Flow Integrity

FFT Fast Fourier Transform

FP Floating Point

FPGA Field Programmable Gate Array

FSM Finite State Machine

FIFO First-In-First-Out

FIR Finite Impulse Response

FMA Fused-Multiply-Add

FPMIX FPU for MIXed-precision computing

FPU Floating Point Unit

GEMM GEneral Matrix Multiply

GPIO General Purpose Input/Output

HARQ Hybrid Automatic Repeat Request

HCI Heterogeneous Cluster Interconnect

HDK Hardware Development Kit

HLS High Level Synthesis

HLS-PQC HLS-based Post-Quantum Cryptographic accelerator

HMAC Hash-based Message Authentication Code

Deliverable D3.1 ISOLDE Page: 173

D3.1 ISOLDE - public 17.05.2024

IEE Inline Encryption Engine

IEE-RV Inline Encryption Engine RISC-V ISA extension

INET Interconnection NETwork

INTT Inverse Number Theoretic Transform

IP Intellectual Property

ISA Instruction Set Architecture

ISE Instruction Set Extension

IUHF Inverse Universal Hash Function

JOP Jump-Oriented Programming

KEM Key Encapsulation Mechanism

KMAC KECCAK Message Authentication Code

LDPC Low Density Parity Check Decoder

LIF Leaky Integrate and Fire (neuron model)

LSW Least Significant Word

LLR Log Likelihood Ratio

M Machine Mode

MAC Multiply-Accumulate

MC Memory Controller

MCCU Maximum Contention Control Unit

MDPC Moderate-Density Parity-Check

ML Machine Learning

ML-DSA Module-Lattice-based – Digital Signature Standard

ML-KEM Module-Lattice-based – Key Encapsulation Mechanism

MMIO Memory Mapped Input/Output

MMU Memory Management Unit

MPSoC Multiprocessor System on a Chip

MSW Most Significant Word

NIST National Institute of Standards and Technology

NoC Network on Chip

NR New Radio

NTT Number Theoretic Transform

ONNX Open Neural Network eXchange

OVI Open Vector Interface

PC Program Counter

Deliverable D3.1 ISOLDE Page: 174

D3.1 ISOLDE - public 17.05.2024

PCA Parallel Computing Accelerator

PE Processing Engine

PMP Physical Memory Protection

PMU Performance Monitor Unit

POR Power-On Reset

PPA Power, Performance, and Area

PQC Post-Quantum Cryptography

PQC-MA Post-Quantum Crypto Accelerator

PRF Polymorphic Register File

PRINCE Low-latency block cipher

PRNG Pseudorandom Number Generator

QC Quasi-Cyclic

QUARMAv2 Lightweight tweakable block cipher

RDC Request Duration Counter

ReCo Row Column

ReO Rectangle Only

ReRo Rectangle Row

ReTr Rectangle Transposed

RF Radio Frequency

RFOG Register File Organization Table

RoCo Row Column

ROM Read-Only-Memory

ROP Return Oriented Programming

RoT Root-of-Trust

RSA Rivest–Shamir–Adleman

RTL Register Transfer Level

RTPM Run-Time Power Monitoring instrumentation

RV32 32-bit RISC-V processor model

RVV RISC-V Vector extension

S Supervisor Mode

SafeSU Safety-related Statistics Unit

SafeTI Safety-related Traffic Injector

SCA Shared Correlation Accelerator

SCH SCHeduler

Deliverable D3.1 ISOLDE Page: 175

D3.1 ISOLDE - public 17.05.2024

SCMI System Control and Management Interface

SDK Software Development Kit

SDRAM Synchronous Dynamic Random Access Memory

SEC SECured RISC-V processor with cryptographic accelerators

SHA Secure Hash Algorithms

SIMD Single Instruction Multiple Data

SLDU SLiDe Unit

SLH-DSA Stateless Hash-Based Digital Signature Standard

SM Security Monitor

SNN Spiking Neutral Networks

SoA State of the Art

SoC System on a Chip

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TBS Transport Block Sizes

TCCP Time Contract monitoring Co-Processor

TCCP-CO Time Contract monitoring Co-Processor COmpiler

TCDM Tightly-Coupled Data Memory

TI Tweak Input

TLUL TileLink Uncached Lightweight bus

TMR Triple Modular Redundancy

TPU Tensor Processing Unit

U User Mode

UE User Equipment

UHF Universal Hash Function

IUHF Inverse Universal Hash Function

VLSI Very Large Scale Integration

VMFPU Vector Multiplier and Floating-Point Unit

VPU Vector Processing Unit

VRF Vector Register File

WCET Worst-Case Execution Time

XIF eXtension InterFace

Deliverable D3.1 ISOLDE Page: 176

D3.1 ISOLDE - public 17.05.2024

6 References
[Abella2023] J. Abella, F. J. Cazorla, S. Alcaide, M. Paulitsch, Y. Peng and I. P. Gouveia, "Envisioning a
Safety Island to Enable HPC Devices in Safety-Critical Domains," 2023.

[arm2024] arm, "Armv8.5-A Memory Tagging Extension," 2024. [Online]. Available:
https://developer.arm.com/-
/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf.

[Avanzi2023] R. Avanzi, S. Banik, O. Dunkelman, M. Eichlseder, S. Ghosh, M. Nageler and F. Regazzoni,
"The QARMAv2 Family of Tweakable Block Ciphers," 2023.

[Baldi2014] Baldi, Marco. QC-LDPC code-based cryptography. Springer Science & Business, 2014.

[Bernstein1999] D. J. Bernstein, "djbfft - an extremely fast library for floating-point convolution," 1999.
[Online]. Available: https://cr.yp.to/djbfft.html.

[Bernstein2001] D. J. Bernstein, "Multidigit multiplication for mathematicians," Advances in Applied
Mathematics, p. 1–19, 2001.

[Bernstein2007] D. J. Bernstein, "The tangent FFT," in International Symposium on Applied Algebra,
Algebraic Algorithms, and Error-Correcting Codes, 2007.

[Božilov2020] D. Božilov, M. Eichlseder, M. Kneževic, B. Lambin, G. Leander, T. Moos, V. Nikov, S.
Rasoolzadeh, Y. Todo and F. Wiemer, "PRINCEv2 - More Security for (Almost) No Overhead," 2020.

[Buhren2021] R. Buhren, H.-N. Jacob, T. Krachenfels and J.-P. Seifert, "One Glitch to Rule Them All: Fault
Injection Attacks Against AMD's Secure Encrypted Virtualization," in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, New York, NY, USA, 2021.

[Cass2022] S. Cass, "Top Programming Languages 2022," 2022. [Online]. Available:
https://spectrum.ieee.org/top-programming-languages-2022.

[Castryck2022] W. Castryck and T. Decru, "An efficient key recovery attack on SIDH," 2022.

[Cavalcante2019] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner and L. Benini, "Ara: A 1-GHz+
scalable and energy-efficient RISC-V vector processor with multiprecision floating-point support in 22-nm
FD-SOI," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, p. 530–543, 2019.

[Cherubin2020] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, and Giovanni Agosta. 2020. Dynamic
Precision Autotuning with TAFFO. ACM Trans. Archit. Code Optim. 17, 2, Article 10 (June 2020), 26 pages.
https://doi.org/10.1145/3388785

[Ciobanu2013] C. B. Ciobanu, "Customizable Register Files for Multidimensional SIMD Architectures,"
2013.

[Ciobanu2018] C. B. Ciobanu, G. Stramondo, C. de Laat and A. L. Varbanescu, "MAX-PolyMem: High-
Bandwidth Polymorphic Parallel Memories for DFEs," 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Vancouver, BC, Canada, 2018, pp. 107-114,
doi:10.1109/IPDPSW.2018.00025.

[Cooley1965] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier
series," Mathematics of computation, vol. 19, p. 297–301, 1965.

[Dobraunig2016] C. Dobraunig, M. Eichlseder, F. Mendel and M. Schläffer, "Ascon v1. 2," Submission to
the CAESAR Competition, vol. 5, p. 7, 2016.

[Donahue2024] P. Donahue and T. Newsome, "RISC-V Debug Specification Version 1.0," February 2024.
[Online]. Available: https://github.com/riscv/riscv-debug-spec/releases/download/1.0.0-rc1-asciidoc/riscv-
debug-specification.pdf. 

Deliverable D3.1 ISOLDE Page: 177

D3.1 ISOLDE - public 17.05.2024

[Duong-Ngoc2022] P. Duong-Ngoc, S. Kwon, D. Yoo and H. Lee, "Area-efficient number theoretic transform
architecture for homomorphic encryption," IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 70, p. 1270–1283, 2022.

[Franchetti2011] F. Franchetti and M. Püschel, "Fast Fourier Transform," in Encyclopedia of Parallel
Computing, Springer, 2011.

[Fritzmann2020] T. Fritzmann, G. Sigl and J. Sepúlveda, "RISQ-V: Tightly coupled RISC-V accelerators for
post-quantum cryptography," IACR Transactions on Cryptographic Hardware and Embedded Systems, p.
239–280, 2020.

[Fuguet2023] Fuguet, César. “HPDcache: Open-Source High-Performance L1 Data Cache for RISC-V
Cores.” In Proceedings of the 20th ACM International Conference on Computing Frontiers, 377–78.
Bologna Italy: ACM, 2023. https://doi.org/10.1145/3587135.3591413.

[Gerlin2022] N. Gerlin, E. Kaja, M. Bora, K. Devarajegowda, D. Stoffel, W. Kunz and W. Ecker, "Design of
a Tightly-Coupled RISC-V Physical Memory Protection Unit for Online Error Detection," in 2022 IFIP/IEEE
30th International Conference on Very Large Scale Integration (VLSI-SoC), 2022.

[Gerlin2023] N. Gerlin, E. Kaja, F. Vargas, L. Lu, A. Breitenreiter, J. Chen, M. Ulbricht, M. Gomez, A.
Tahiraga, S. Prebeck, E. Jentzsch, M. Krstić and W. Ecker, "Bits, Flips and RISCs," in 2023 26th
International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2023.

[GoogleProjectZero2024] Google Project Zero, "0day "In the Wild"," 2024. [Online]. Available:
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit#gid=1
746868651.

[Han2022] Z. Han, G. Rutsch, D. Wang, B. Li, S. S. Prebeck, D. S. Lopera, K. Devarajegowda and W.
Ecker, "Transformative Hardware Design Following the Model-Driven Architecture Vision," in VLSI-SoC:
Technology Advancement on SoC Design, Cham, 2022.

[Hazy1997] L. Hazy and M. El-Tanany, "Synchronization of OFDM systems over frequency selective fading
channels," in 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, 1997.

[Intel2021] Intel, "Intel Hardware Shield - Intel Total Memory Encryption," May 2021. [Online]. Available:
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf. 

[Kaja2021] E. Kaja, N. Gerlin, M. Vaddeboina, L. Rivas, S. Prebeck, Z. Han, K. Devarajegowda and W.
Ecker, "Towards Fault Simulation at Mixed Register-Transfer/Gate-Level Models," in 2021 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2021.

[Kaplan2021] D. Kaplan, J. Powell and T. Woller, "AMD Memory Encryption," October 2021. [Online].
Available: https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf. 

[Kim2014] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai and O. Mutlu, "Flipping
bits in memory without accessing them: an experimental study of DRAM disturbance errors," SIGARCH
Comput. Archit. News, vol. 42, p. 361–372, June 2014.

[Kim2020] S. Kim, W. Jung, J. Park and J. H. Ahn, "Accelerating number theoretic transformations for
bootstrappable homomorphic encryption on gpus," in 2020 IEEE International Symposium on Workload
Characterization (IISWC), 2020.

[Kohlbrenner2020] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic and D. Song, “Keystone: An Open
Framework for Architecting Trusted Execution Environments,” in Proceedings of the Fifteenth European
Conference on Computer Systems, 2020.

[Koleci2023] K. Koleci, P. Mazzetti, M. Martina and G. Masera, "A Flexible NTT-Based Multiplier for Post-
Quantum Cryptography," IEEE Access, vol. 11, p. 3338–3351, 2023.

https://doi.org/10.1145/3587135.3591413

Deliverable D3.1 ISOLDE Page: 178

D3.1 ISOLDE - public 17.05.2024

[Kroll2017] H. Kroll, M. Korb, B. Weber, S. Willi and Q. Huang, "Maximum-Likelihood Detection for Energy-
Efficient Timing Acquisition in NB-IoT," in 2017 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), 2017.

[Kuzmanov2006] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis. Multimedia rectangularly addressable
memory. IEEE Transactions on Multimedia, pages 315–322, April 2006.

[Kwong2012] J. Kwong and M. Goel, "A high performance split-radix FFT with constant geometry
architecture," in 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012.

[Kwong2013] J. Y. Kwong and M. Goel, "Constant geometry split radix fft". Patent US 2013/0066932 A1,
2013.

[Lee2023] J. Lee, W. Kim and J.-H. Kim, "A Programmable Crypto-Processor for National Institute of
Standards and Technology Post-Quantum Cryptography Standardization Based on the RISC-V
Architecture," Sensors, vol. 23, 2023.

[Liang2020] Z. Liang, S. Shen, Y. Shi, D. Sun, C. Zhang, G. Zhang, Y. Zhao and Z. Zhao, "Number Theoretic
Transform: Generalization, Optimization, Concrete Analysis and Applications," in Information Security and
Cryptology: 16th International Conference, Inscrypt 2020, Guangzhou, China, December 11–14, 2020,
Revised Selected Papers, Berlin, 2020.

[Liang2022] Z. Liang and Y. Zhao, "Number Theoretic Transform and Its Applications in Lattice-based
Cryptosystems: A Survey," 2022.

[Liljestrand2021] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg and N. Asokan, “{PACStack}: an
authenticated call stack,” in 30th USENIX Security Symposium (USENIX Security 21), 2021.

[Lippuner2020] S. Lippuner, M. Salomon, M. Korb, M. Gautschi, T. Dellsperger, S. Altorfer, J. Rogin, S.
Willi, D. Tschopp, B. Weber and Q. Huang, "A Triple-Mode Cellular IoT SoC Achieving −136.8-dBm eMTC
Sensitivity," IEEE Solid-State Circuits Letters, vol. 3, pp. 418-421, 2020.

[Longa2016] P. Longa and M. Naehrig, "Speeding up the number theoretic transform for faster ideal lattice-
based cryptography," in Cryptology and Network Security: 15th International Conference, CANS 2016,
Milan, Italy, November 14-16, 2016, Proceedings 15, 2016.

[Nannipieri2021] P. Nannipieri, S. Di Matteo, L. Zulberti, F. Albicocchi, S. Saponara and L. Fanucci, "A
RISC-V post quantum cryptography instruction set extension for number theoretic transform to speed-up
CRYSTALS algorithms," IEEE Access, vol. 9, p. 150798–150808, 2021.

[Nasahl2021] P. Nasahl, R. Schilling, M. Werner, J. Hoogerbrugge, M. Medwed and S. Mangard, "CrypTag:
Thwarting physical and logical memory vulnerabilities using cryptographically colored memory," in
Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, 2021.

[Niederreiter1986] Niederreiter, Harald. "Knapsack-type cryptosystems and algebraic coding theory." Prob.
Contr. Inform. Theory 15.2 (1986): 157-166.

[OpenHWGroup2021] OpenHW Group, "CORE-V Extension Interface," 2021. [Online]. Available:
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/v0.2.0/x_ext.html.

[OpenHWGroup2022] OpenHW Group, "Introduction to the core-v extension interface," Apr. 2022. [Online].
Available: https://docs.openhwgroup.org/projects/ openhw-group-core-v-xif/en/latest/intro.html

[OpenHWGroup2023] OpenHW Group, "CVFPU repository," 2023. [Online]. Available:
https://github.com/openhwgroup/cvfpu.

[OpenHWGroup2024] OpenHW Group, "CVA6 repository," 2024. [Online]. Available:
https://github.com/openhwgroup/cva6.

[Ozcan2019] E. Ozcan and A. Aysu, "High-level synthesis of number-theoretic transform: A case study for
future cryptosystems," IEEE Embedded Systems Letters, vol. 12, p. 133–136, 2019.

Deliverable D3.1 ISOLDE Page: 179

D3.1 ISOLDE - public 17.05.2024

[Perotti2022] M. Perotti, M. Cavalcante, N. Wistoff, R. Andri, L. Cavigelli and L. Benini, "A “New Ara” for
vector computing: an open source highly efficient RISC-V V 1.0 vector processor design," in 2022 IEEE
33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP),
2022.

[Nashimoto2021] S. Nashimoto, D. Suzuki, R. Ueno and N. Homma, "Bypassing Isolated Execution on
RISC-V using Side-Channel-Assisted Fault-Injection and Its Countermeasure," IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2022, p. 28–68, November 2021.  

[Roscian2013] C. Roscian, A. Sarafianos, J.-M. Dutertre and A. Tria, "Fault Model Analysis of Laser-
Induced Faults in SRAM Memory Cells," in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2013.

[RVI2021] RISC-V International, "RISC-V V Vector Extension (Version 1.0)," 2021. [Online]. Available:
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf.

[RVI2024] RISC-V International, "RISC-V ELF psABI Document," 2024. [Online]. Available:
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/.

[RV-SS-LP-TG2023] RISC-V Shadow-stack and Landing-pads Task Group, "Shadow Stack and Landing
Pads (v0.3.1)," 2023. [Online]. Available: https://github.com/riscv/riscv-cfi/.

[RV-SS-LP-TG2024] RISC-V Shadow-stack and Landing-pads Task Group, "Shadow Stack and Landing
Pads (0036ff2)," 2024. [Online]. Available: https://github.com/riscv/riscv-cfi/.

[Sangiovanni-Vincentelli2012] A. Sangiovanni-Vincentelli, W. Damm and R. Passerone, "Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems*," European Journal of Control, vol. 18,
pp. 217-238, 2012.

[Satriawan2023] A. Satriawan, I. Syafalni, R. Mareta, I. Anshori, W. Shalannanda and A. Barra, "Conceptual
Review on Number Theoretic Transform and Comprehensive Review on Its Implementations," IEEE
Access, 2023.

[Tran2020] D. D. Tran, K. Grüttner, F. Oppenheimer and W. Nebel, "Timing Contracts and Monitors for
Safety Relevant Controller Design in IEC 61499," in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2020.

[VE-VIDES] "VE-VIDES - Designmethoden und HW/SW-Co-Verifikation für die eindeutige
Identifizierbarkeit von Elektronikkomponenten," [Online]. Available:
https://www.elektronikforschung.de/projekte/ve-vides (German only).

[Vizcaino2023] P. Vizcaino, F. Mantovani, R. Ferrer and J. Labarta, "Acceleration with long vector
architectures: Implementation and evaluation of the FFT kernel on NEC SX-Aurora and RISC-V vector
extension," Concurrency and Computation: Practice and Experience, vol. 35, p. e7424, 2023.

[Walther2000] J. S. Walther, "The Story of Unified Cordic," Journal of VLSI signal processing systems for
signal, image and video technology, vol. 25, pp. 107-112, 2000.

[Waterman2021] A. Waterman, Asanovic and J. Hauser, "The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture, Document Version 20211203," December 2021. [Online]. Available:
https://drive.google.com/file/d/1EMip5dZlnypTk7pt4WWUKmtjUKTOkBqh/view?usp=drive_link. 

https://www.elektronikforschung.de/projekte/ve-vides

	Table of Contents
	1 Executive Summary
	2 Introduction
	2.1 General Information
	2.2 Purpose and Scope

	3 Accelerators and Extensions (WP3)
	3.1 Safety and Security Modules
	3.1.1 Inline Encryption Engine (IEE) – NXP-AT
	3.1.1.1 General Information
	3.1.1.2 Purpose and Scope
	3.1.1.3 Place in the System
	3.1.1.4 Block Diagram
	3.1.1.5 ISA
	3.1.1.6 Interfaces
	3.1.1.7 Sub-Modules
	3.1.1.8 Clocking Strategy
	3.1.1.9 Reset Strategy
	3.1.1.10 Power Management Strategy
	3.1.1.11 Debugging Strategy

	3.1.2 Backward-Edge Control Flow Integrity (BCFI) – NXP-AT
	3.1.2.1 General Information
	3.1.2.2 Purpose and Scope
	3.1.2.3 Place in the System
	3.1.2.4 Block Diagram
	3.1.2.5 ISA
	3.1.2.6 Sub-Modules
	3.1.2.7 Debugging Strategy

	3.1.3 Context-Aware Performance Monitor Counter (CA-PMC) – TRT
	3.1.3.1 General Information
	3.1.3.2 Purpose and Scope
	3.1.3.3 Place in the System
	3.1.3.4 Block Diagram
	3.1.3.5 Interfaces
	3.1.3.6 Reset Strategy

	3.1.4 Cryptographically Tagged Memory (CTM) – NXP-AT
	3.1.4.1 Purpose and Scope
	3.1.4.2 Place in the System
	3.1.4.3 Block Diagram
	3.1.4.4 ISA
	3.1.4.5 Sub-Modules
	3.1.4.6 Debugging Strategy

	3.1.5 Enclave Memory Isolation (EMI) – NXP-AT
	3.1.5.1 General Information
	3.1.5.2 Purpose and Scope
	3.1.5.3 Place in the System
	3.1.5.4 Block Diagram
	3.1.5.5 ISA
	3.1.5.6 Debugging Strategy

	3.1.6 Forward-Edge Control Flow Integrity (FCFI) – NXP-AT
	3.1.6.1 General Information
	3.1.6.2 Purpose and Scope
	3.1.6.3 Place in the System
	3.1.6.4 Sub-Modules
	3.1.6.5 Debugging Strategy

	3.1.7 Memory Subsystem Support for Bytecode VMs – HM
	3.1.7.1 General Information
	3.1.7.2 Purpose and Scope
	3.1.7.3 Place in the System
	3.1.7.4 Block Diagram
	3.1.7.5 Interfaces

	3.1.8 Safety-Related Traffic Injector (SafeTI) – BSC
	3.1.8.1 General Information
	3.1.8.2 Purpose and Scope
	3.1.8.3 Place in the System
	3.1.8.4 Block Diagram
	3.1.8.5 ISA
	3.1.8.6 Interfaces
	3.1.8.7 Clocking Strategy
	3.1.8.8 Reset Strategy
	3.1.8.9 Verification Strategy

	3.1.9 Safety and Security Control Unit – IFX
	3.1.9.1 Purpose and Scope
	3.1.9.2 Place in the System
	3.1.9.3 Block Diagram
	3.1.9.4 ISA
	3.1.9.5 Interfaces
	3.1.9.6 Sub-Modules
	3.1.9.7 Software based Error Handling

	3.1.10 Safety Island - Interface Definition – UZL
	3.1.10.1 General Information
	3.1.10.2 Purpose and Scope
	3.1.10.3 Place in the System
	3.1.10.4 Interfaces
	3.1.10.5 Reset Strategy
	3.1.10.6 Debugging Strategy

	3.1.11 Root-of-Trust Unit (RoT) – UNIBO
	3.1.11.1 General Information
	3.1.11.2 Purpose and Scope
	3.1.11.3 Place in the System
	3.1.11.4 Block Diagram
	3.1.11.5 Power Management Strategy

	3.1.12 Root-of-Trust Unit Design and Interface with RISC-V Host Processor (TitanCFI) – UNIBO
	3.1.12.1 General Information
	3.1.12.2 Purpose and Scope
	3.1.12.3 Place in the System
	3.1.12.4 Block Diagram
	3.1.12.5 Interfaces
	3.1.12.6 Clocking Strategy
	3.1.12.7 Reset Strategy
	3.1.12.8 Debugging Strategy

	3.1.13 High-Performance Cache Analysis – SYSGO
	3.1.13.1 General Information
	3.1.13.2 Purpose and Scope
	3.1.13.3 Place in the System
	3.1.13.4 Block Diagram

	3.2 Accelerator Infrastructure, Memories, Arithmetic Units, Interfaces and Virtualization
	3.2.1 FPU for Mixed-Precision Computing (FPMIX) – POLIMI
	3.2.1.1 General Information
	3.2.1.2 Purpose and Scope
	3.2.1.3 Place in the System
	3.2.1.4 Block Diagram
	3.2.1.5 ISA

	3.2.2 Floating-Point Unit for RISC-V (FPU) – UZL
	3.2.2.1 General Information
	3.2.2.2 Purpose and Scope
	3.2.2.3 Place in the System
	3.2.2.4 Block Diagram
	3.2.2.5 ISA
	3.2.2.6 Interfaces

	3.2.3 Scratchpad – IMT
	3.2.3.1 General Information
	3.2.3.2 Purpose and Scope
	3.2.3.3 Place in the System
	3.2.3.4 Block Diagram
	3.2.3.5 Clocking Strategy
	3.2.3.6 Reset Strategy

	3.3 Monitoring Infrastructure
	3.3.1 Context-Aware PMC Interface (CA-PMC-IF) – TRT
	3.3.1.1 General Information
	3.3.1.2 Purpose and Scope
	3.3.1.3 Place in the System
	3.3.1.4 Block Diagram
	3.3.1.5 Interfaces

	3.3.2 Run-Time Power Monitoring Instrumentation (RTPM) – POLIMI
	3.3.2.1 General Information
	3.3.2.2 Purpose and Scope
	3.3.2.3 Place in the System
	3.3.2.4 Block Diagram

	3.3.3 Safety-Related Statistics Unit (SafeSU) – BSC
	3.3.3.1 General Information
	3.3.3.2 Purpose and Scope
	3.3.3.3 Place in the System
	3.3.3.4 Block Diagram
	3.3.3.5 Interfaces
	3.3.3.6 Clocking Strategy
	3.3.3.7 Verification Strategy

	3.3.4 Time Contract Monitoring Co-Processor (TCCP) – OFFIS
	3.3.4.1 General Information
	3.3.4.2 Purpose and Scope
	3.3.4.3 Place in the System
	3.3.4.4 Block Diagram
	3.3.4.5 Interfaces
	3.3.4.6 Verification Strategy

	3.4 SIMD/Vector, AI Accelerator and Tensor Processor Unit Design
	3.4.1 AI/ML Accelerator (AMA) – FotoNation
	3.4.1.1 General Information
	3.4.1.2 Purpose and Scope
	3.4.1.3 Place in the System
	3.4.1.4 Block Diagram
	3.4.1.5 ISA
	3.4.1.6 Interfaces
	3.4.1.7 Sub-Modules
	3.4.1.8 Clocking Strategy
	3.4.1.9 Reset Strategy
	3.4.1.10 Power Management Strategy
	3.4.1.11 Debugging Strategy

	3.4.2 CNN Accelerator for an Event-Based Sparse Neural Networks (ECNNA) – SAL
	3.4.2.1 General Information
	3.4.2.2 Purpose and Scope
	3.4.2.3 Place in the System
	3.4.2.4 Block Diagram
	3.4.2.5 Debugging Strategy

	3.4.3 Parallel Computing Accelerator (PCA) – POLITO
	3.4.3.1 General Information
	3.4.3.2 Purpose and Scope
	3.4.3.3 Place in the System
	3.4.3.4 Block Diagram

	3.4.4 Tensor Processing Unit (TPU) – UNIBO
	3.4.4.1 General Information
	3.4.4.2 Purpose and Scope
	3.4.4.3 Place in the System
	3.4.4.4 Block Diagram
	3.4.4.5 Power Management Strategy

	3.4.5 Vector Processing Unit (VPU) – ETHZ
	3.4.5.1 General Information
	3.4.5.2 Purpose and Scope
	3.4.5.3 Place in the System
	3.4.5.4 Block Diagram
	3.4.5.5 ISA
	3.4.5.6 Interfaces
	3.4.5.7 Sub-Modules
	3.4.5.8 Reset Strategy

	3.4.6 Vector-SIMD Accelerator – IMT
	3.4.6.1 General Information
	3.4.6.2 Purpose and Scope
	3.4.6.3 Place in the System
	3.4.6.4 Block Diagram
	3.4.6.5 ISA
	3.4.6.6 Interfaces
	3.4.6.7 Clocking Strategy
	3.4.6.8 Reset Strategy

	3.4.7 Extension Platform (EXP) – TUI
	3.4.7.1 General Information
	3.4.7.2 Purpose and Scope
	3.4.7.3 Place in the System
	3.4.7.4 Block Diagram
	3.4.7.5 ISA
	3.4.7.6 Interfaces
	3.4.7.7 Clocking Strategy
	3.4.7.8 Power Management Strategy
	3.4.7.9 Debugging Strategy

	3.5 Cryptographic and Security Accelerators
	3.5.1 Accelerator for Post-Quantum Key Encapsulation Mechanism BIKE (ACC-BIKE) – POLIMI
	3.5.1.1 General Information
	3.5.1.2 Purpose and Scope
	3.5.1.3 Place in the System
	3.5.1.4 Block Diagram

	3.5.2 HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC) – BSC
	3.5.2.1 General Information
	3.5.2.2 Purpose and Scope
	3.5.2.3 Place in the System
	3.5.2.4 Block Diagram
	3.5.2.5 Interfaces
	3.5.2.6 Clocking Strategy
	3.5.2.7 Reset Strategy
	3.5.2.8 Verification Strategy

	3.5.3 Number Theoretic Transform Algorithms for Post Quantum Cryptography (NTT) – IMT
	3.5.3.1 General Information
	3.5.3.2 Purpose and Scope
	3.5.3.3 Place in the System
	3.5.3.4 Block Diagram

	3.5.4 Post-Quantum Crypto Accelerator (PQC-MA) – SAL
	3.5.4.1 General Information
	3.5.4.2 Purpose and Scope
	3.5.4.3 Place in the System
	3.5.4.4 Block Diagram
	3.5.4.5 Interfaces
	3.5.4.6 Sub-Modules

	3.5.5 Secured RISC-V Processor with Cryptographic Accelerators (SEC) – BEIA
	3.5.5.1 General Information
	3.5.5.2 Purpose and Scope
	3.5.5.3 Place in the System
	3.5.5.4 Block Diagram
	3.5.5.5 Clocking Strategy
	3.5.5.6 Reset Strategy

	3.6 Signal Processing, Neuromorphic and Application-Specific Instruction Set Processors (ASIPs)
	3.6.1 Fast Fourier Transform Algorithms for SIMD and Vector Accelerators (FFT) – IMT
	3.6.1.1 General Information
	3.6.1.2 Purpose and Scope
	3.6.1.3 Place in the System
	3.6.1.4 Block Diagram

	3.6.2 Low Density Parity Check Decoder (LDPC) – ACP
	3.6.2.1 General Information
	3.6.2.2 Purpose and Scope
	3.6.2.3 Place in the System
	3.6.2.4 Block Diagram
	3.6.2.5 Interfaces
	3.6.2.6 Clocking Strategy
	3.6.2.7 Reset Strategy
	3.6.2.8 Power Management Strategy
	3.6.2.9 Debugging Strategy

	3.6.3 Motor Control Accelerator – CODA
	3.6.3.1 General Information
	3.6.3.2 Purpose and Scope
	3.6.3.3 Place in the System
	3.6.3.4 Block Diagram
	3.6.3.5 ISA
	3.6.3.6 Interfaces
	3.6.3.7 Clocking Strategy
	3.6.3.8 Reset Strategy
	3.6.3.9 Debugging Strategy

	3.6.4 Neuromorphic HW Accelerator – POLITO
	3.6.4.1 General Information
	3.6.4.2 Purpose and Scope
	3.6.4.3 Place in the System
	3.6.4.4 Block Diagram
	3.6.4.5 Interfaces
	3.6.4.6 Clocking Strategy

	3.6.5 Shared Correlation Accelerator (SCA) – ACP
	3.6.5.1 General Information
	3.6.5.2 Purpose and Scope
	3.6.5.3 Place in the System
	3.6.5.4 Block Diagram
	3.6.5.5 Clocking Strategy
	3.6.5.6 Reset Strategy
	3.6.5.7 Power Management Strategy
	3.6.5.8 Verification Strategy

	4 Conclusion
	5 Acronyms and Definitions
	6 References

