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1 Executive Summary
The ISOLDE project aims to create high-performance processing systems and platforms targeting
different use cases (space, automotive, smart home, cellular IoT) based on the free, open-source
RISC-V instruction set architecture.

This documents refine the architecture and describe the prototype implementations of the hard-
ware modules related to safety and security, previously introduced in Deliverable D3.1. These
modules have been developed within the work package WP3 “Accelerators and Extensions” of
the ISOLDE project, more particularly in tasks T3.1 and T3.3.

The extensions described in this report are grouped into different domains matching the scope of
some different tasks from WP3:

1. Extensions enhancing the safety and security of RISC-V systems (T3.1)
2. Extensions that allow monitoring of the foundational core and accelerators (T3.3)

For each safety / security extension, this document contains refined architecture description since
deliverable D3.1, reminding the purpose of the extension, where in the system is it integrated,
and which other systems it is connected to. We then provide a more detailed description on
the hardware module internals, describing the prototype that allow the hardware module to be
evaluated / verified.

WP5 “Use Cases and Demonstrators” will combine the foundational cores developed by WP2
“Open-source Foundation Cores” and selected features from WP3, building diverse demonstrators
(space, automotive, smart home, cellular IoT) that highlight benefits and opportunities enabled by
individual extensions. Further, WP4 “System Software, Development Tools and Automation” is
providing the required software support (e.g., toolchains, operating system support, drivers).

Hence, the contributions of this deliverable are crucial for further collaboration with these work
packages. In the context of WP3, this deliverable is the basis for the follow-up deliverable covering
the final implementations of the extensions (D3.4, D3.5 in M33). The components described in
this deliverable are aiming at different maturity levels and aiming for different certifiability.
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2 Introduction
2.1 General Information
Work Package 3 (WP3) focuses on developing hardware modules and extensions enhancing
RISC-V systems based on the foundational cores provided by WP2 to create and demonstrate
high-performance computing systems within WP5.

The purpose of Deliverable D3.2, titled "Safety & Security modules prototype implementation",
is to refine the architecture description of each safety / security hardware module presented in
Deliverable D3.1, and provide implementation details and early results prior to the integration in
ISOLDE use-cases in Work-package WP5.

This document is intended for public release and includes the hardware extensions’ updated ar-
chitecture and design specifications. These updated architecture and design specifications en-
capsulate the extensions’ technical research , implementation and developmental progress.

2.2 Purpose and Scope
This document is an intermediary deliverable prior to Deliverable D3.4 that will report the final
implementation of safety and security hardware modules, due in early 2026 and finalizing the
bottom-up approach to address all ongoing safety / security activities comprehensively.

WP3 organizes the project into distinct tasks covering different domains, with various partners
contributing to each. Section 3 focuses on Task T3.1: Safety & Security Modules, and Task T3.3:
Monitoring Infrastructure that relates to either safety or cyber-security hardware IPs.

Each subsection of Section 3 relates to one of such tasks, describing the ecosystem and the
participating partners. The remainder of these subsections contains in-depth technical information
about each specific extension providing:

• an IP card of the hardware module summarizing technical information.
• general information about the context the hardware module will be used in, providing a

scope beyond the specific module itself.
• The purpose and scope of this specific hardware module, providing a brief high-level de-

scription of the module purpose.
• A refined architecture description pointing out the updates since the initial architecture

description provided in Deliverable D3.1, and covering its placement in the system with
block diagrams.

• A list of the both control and data interfaces to the other IPs this specific hardware compo-
nent is connected to, as well as dependencies to existing IPs.

• A description of any instruction set architecture (ISA) specialization associated with the
hardware module, as well as potential hardware abstraction layers (HAL) or high-level API.

• Finally, the evaluation prototype that will report the implementation and developmental
progress related to the safety / security module, as well as strategies for clocking, resetting,
power management, verification and debugging, possibly including a test-bench prototype
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and early results prior to the integration to WP5 use-cases.

Within WP5 and its associated deliverables, we will merge these safety / security hardware mod-
ules with selected core features from WP2 and software IPs from WP4 providing software sup-
port.
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3 Safety and Security extensions
3.1 Safety and Security Modules
Task 3.1 focuses on the development of technologies supporting safety and security. The devel-
oped security modules include components for memory encryption, control flow integrity (CFI),
memory isolation, hardware support for bytecode virtual machine interpreters, and hardware root
of trust.

Lead
IP Partner Domain Dependencies Licensing
IEE (3.1.1) NXP-AT Security None Proprietary

closed source
BCFI (3.1.2) NXP-AT Security RV32I processor, IEE (3.1.1) Proprietary

closed source
CTM (3.1.3) NXP-AT Security RV32I processor, IEE (3.1.1) Proprietary

closed source
EMI (3.1.4) NXP-AT Security RV32I processor, IEE (3.1.1) Proprietary

closed source
FCFI (3.1.5) NXP-AT Security RV32I processor Proprietary

closed source
CA-PMC (3.1.6) TRT Safety CA-PMC-IF (3.2.1) Proprietary

closed source
Memory support
for Bytecode VMs
(3.1.7)

HM Security None Permissive
open source

SafeTI (3.1.8) BSC Safety None Permissive
open source

Safety & Secu-
rity Control Unit
(3.1.9)

IFX Safety,
Security

None Permissive
open source

Safety Island
(3.1.10)

UZL Safety CVA6 core Permissive
open source

RoT (3.1.11) UNIBO Security CVA6, OpenTitan Permissive
open source

High-Perf.
Cache Analy-
sis (3.1.12.1)

SYSGO Security CVA6, CEA cache (Tristan) N/A

Table 3.1: Overview of Task 3.1 contributions
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3.1.1 Inline Encryption Engine (IEE) – NXP-AT

3.1.1.1 IP Card

Basic Info

IP name Inline Encryption Engine (IEE)
License Proprietary Closed Source
Repository N/A

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol N/A
Address Map N/A

Initiator Interface
Protocol OBI
Cached? depends on integration platformIOMMU?

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA N/A

Software

Compiler Requires specialized compiler? N
Compiler repository N/A

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? N
(if standalone sim) SW requirements? N/A
Integration documented / examples? N/A

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (Xcelium)
Open-source simulation? N

Evaluation PPA results available? Y

3.1.1.2 General Information

Traditionally, isolation of different workloads and their associated sensitive assets is achieved us-
ing the processor’s privilege mode and logical memory isolation (e.g., using memory protection
or management units). The logical memory isolation primitive limits access triggered by specific
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privilege modes and is configured by a trusted software running in a higher privilege mode, for
example, the firmware running in machine mode or the operating system running in supervisor
mode. However, research has shown that this logical isolation is insufficient against a range of
physical attacks techniques (e.g., probing the memory bus, injecting faults flipping bits in mem-
ory [25, 19], or injecting faults affecting the memory protection configuration by the operating
system [22]).

Adding a memory encryption engine to the system, which encrypts all data before it reaches the
external bus, helps to mitigate some of these attacks. The resulting ciphertexts usually depend
on the physical address (used as tweak) in addition to the secret key to mitigate attacks exchang-
ing the encrypted data words. If a pure encryption scheme is used as a primitive for memory
encryption, then the confidentiality of data on the external bus and in memory is protected, and
controlled modifications are harder to achieve. If the verification of the data integrity is required,
an authenticated encryption scheme must be used, but then also the memory overhead will be
higher. Memory encryption engines help mitigate many physical attacks, but they also impose
considerable area and latency overhead, while not increasing resilience against logical attacks.

As this deliverable provides updated information about the IP state since Deliverable D 3.1, please
refer to Section 3.1.1 in Deliverable D 3.1 for additional information about the Inline Encryption
Engine (IEE) module.

3.1.1.3 Purpose and Scope

The IEE module adds a tweakable memory encryption engine based on a low-latency cipher to
the base core. The difference to the schemes mentioned in the previous section is that we use
a tweak input to make the resulting ciphertext depend on additional metadata. This metadata is
provided by other extensions contributed by NXP-AT, which add defense mechanisms against var-
ious logical attacks. For more information about these extensions, please refer to the description
of the Backward-Edge Control Flow Integrity (BCFI; see Section 3.1.2), Cryptographically Tagged
Memory (CTM; see Section 3.1.3), and Enclave Memory Isolation (EMI; see Section 3.1.4) exten-
sion provided by NXP-AT. Systems that already including a tweakable memory encryption engine
especially benefit from this approach, as adding the mentioned defenses against logical attacks
comes at little additional cost.

3.1.1.4 Refined architecture description

As we were not able to find an integration opportunity for our IPs within the official ISOLDE
demonstrators, we instead collaborate with the TRISTAN project, integrating our features into
the NFC_FPGA demonstrator (WI6.4.1). Hence, the architecture of this extension was updated
to match the new integration target where an extended CV32E40S RISC-V core will be used.

In Figure 3.1, the parts of the CV32E40S core modified by the IEE extension are highlighted in
orange. In the following paragraphs, the added and modified modules are described in more
detail.
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Figure 3.1: Architecture of the IEE extension

CSR

The IEE extension adds CSRs representing the encryption key (ieekey0 - ieekey3) and the end
of the encrypted memory region (mieeencend and its read-only alias uieeencend) to the existing
CSR unit. Since these CSRs provide the encryption key and define the end of the encrypted
memory region, they influence the memory encryption. Therefore, it is essential to ensure that
the pipeline is flushed when they are written. Otherwise, instruction fetches or regular memory
access in previous pipeline stages may use a wrong configuration. Therefore, the IEE extension
also adapts the logic in the CSR unit to ensure the pipeline is flushed when the introduced CSRs
are written to.

I Tweak

The I Tweak module provides the active encryption tweak to the Instruction IEE module. It is
connected to the core’s OBI instruction interface and the CSRs, so that it has access to all infor-
mation required to derive the encryption tweak. The encryption tweak generated by the I Tweak
module consists of the access address, access privilege level and the enclave tweak provided by
NXP-AT’s EMI extension.

Instruction IEE

The Instruction IEE module is attached to the core’s OBI instruction interface and provides a OBI
instruction interface to external components. Additionally, it is connected to the CSRs introduced
by the IEE extension and the I Tweak module providing the required encryption tweak. It decrypts
all instruction fetches from the encrypted memory region, encryption is not required as the the
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core never issues write requests through the OBI instruction interface.

The design of the Instruction IEE module is detailed in Figure 3.2. At its core, it consists of a
low-latency 32-bit decryption function. The decryption function relies on a 32-bit keyed unscram-
bling primitive (inspired by the SRAM scrambler primitive from openTitan) and the KeystreamGen
module deriving the required key stream. The KeystreamGen module derives the key for the un-
scrambling primitive from the processor’s inline encryption key (stored in the ieekey0 - ieekey3
CSRs) and the tweak provided by the I Tweak module. During the address phase of a new OBI re-
quest (obi_instr_if.s_req.req asserted), the key required for decryption is derived and latched
together with the request address for later use in the response phase. When the availability of
the response is indicated and the last request addresses was within the encrypted memory re-
gion (defined by the design parameter IEE_ENCRYPTION_BASE and the mieeencend CSR), then
the rdata signals of the payload are replaced with the unscrambled version. All other signals of
the external OBI interface connected to the memory (obi_instr_ext_if) are passed through to
the core’s OBI interface (obi_instr_if). Since the key derived by the KeystreamGen module is
always ready during the response phase and the unscrambling is purely combinatorial, the cycle
count for instruction fetch requests remains the same regardless of the usage of the Instruction
IEE module. However, the additional logic increases the delay of the critical path. If the achievable
frequency fails to meet requirements, more pipeline stages must be added. To reduce stalls in
this scenario, caused by waiting for unscrambling results, a cache with prefetching can be added.
This allows the cache subsystem to fetch, unscramble, and buffer instructions that are likely to be
requested by the processor in the future.

Figure 3.3 details the design of the KeystreamGen module. It consists of two 64-bit PRINCEv2 [5]
instances with a 1-stage pipeline. The PRINCEv2 Sbox was replaced with the ORTHROS [2] Sbox
to reduce the latency of PRINCEv2. The tweak provided by the I Tweak module is split and routed
to the data input of the two PRINCEv2 instances. The PRINCEv2 instances derive the 128-bit
key required for the unscrambling primitive from the inline encryption engine key and the provided
tweak. This key is divided into four round keys, which are XORed with the data before and after
the initial and final inverse substitution-permutation network (SPN−1) rounds of the unscrambling
primitive, as illustrated in Figure 3.4. Finally, Figure 3.5 details the construction of the inverse
SPN. It consists of a key addition layer, followed by the inverse SKINNY [4] MixColumns operation,
the inverse SKINNY ShiftRows operation, the inverse PRINCEv2 S-box, and finally another key
addition layer.

The custom low-latency 32-bit encryption and decryption function should be considered as exten-
sive scrambling for now, since a thorough security analysis has yet to be conducted. However,
further security improvements are investigated, and a paper conducting a thorough security anal-
ysis of the scheme is currently in progress.

D Tweak

The D Tweak module provides the active encryption tweak to the Data IEE module. It is connected
to the OBI instruction interface and the CSRs, so that it has access to all information required to
derive the encryption tweak. The encryption tweak generated by the D Tweak module consists of
the access address, access privilege level, the BCFI access identifier provided by NXP-AT’s BCFI
extension, the pointer color provided by NXP-AT’s CTM extension and the enclave tweak provided
by NXP-AT’s EMI extension.
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Data IEE

The Data IEE module is attached to the core’s OBI data interface and provides a OBI data interface
to external components. Additionally, it is connected to the CSRs introduced by the IEE extension
and the D Tweak module providing the required encryption tweak. It encrypts data to be written
to the encrypted memory region before passing it to the external OBI data interface. Similarly, it
decrypts data read from the encrypted memory region attached to the external OBI data interface

D3.2 ISOLDE - public 29.04.2025



Deliverable D3.2 ISOLDE Page 12

before passing it to the core. Unlike the Instruction IEE, where the latency and throughput of fetch
requests are unaffected by the inline encryption, memory requests issued through the Data IEE
may require a few additional cycles in the worst case (depending on the the duration of the OBI
transactions and the memory access sequence). These additional cycles result from the Data IEE
module not being able to issue another request via the OBI data interface, as it is still occupied
with a request related to the more complex handling of stores: For fullword stores, the key from
the KeystreamGen module must already be ready during the address phase of the OBI transfer as
it is required for the encryption of the write data. For subword stores, an additional read access is
required before the store can be performed. This is due to the low-latency cipher’s fixed block size
of 32 bits, which requires the corresponding word to be read and decrypted, the affected bytes to
be updated, and the updated word to be re-encrypted before issuing the store request.

The Data IEE module incorporates a more complex control logic and a pipelined data path to effi-
ciently manage the more complex handling of stores to the encrypted region. The Data IEE mod-
ule requires the low-latency 32-bit decryption function described in the Instruction IEE paragraph,
along with its encryption counterpart. The difference between the encryption and decryption func-
tions is that the encryption function uses a scrambling primitive instead of an unscrambling one.
The scrambling primitive employs the regular SPN instead of the inverse (i.e., inverted operations
in reversed order), and the order of the round keys is reversed.

3.1.1.5 Interfaces

The IEE extension integrates modules between the CV32E40S core’s OBI interfaces (one for
fetching instructions and another for accessing data) and the external memory, enabling encryp-
tion or decryption of data before it is written to external memory or passed to the core. Additionally,
it extends the ISA of the CV32E40S core with new CSRs that store the encryption key and the
boundary of the encrypted memory region. Finally, as mentioned in Section 3.1.1.3, the IEE mod-
ule can optionally be connected to the other security extensions provided by NXP-AT to increase
protection against logical attacks.

3.1.1.6 ISA specialization

The specification of the ISA extension did not change since deliverable D3.1. The IEE extension
adds CSRs representing the encryption key (ieekey0 - ieekey3) and the end of the encrypted
memory region (mieeencend and its read-only alias uieeencend). The base address of the en-
crypted memory region can be configured using the IEE_ENCRYPTION_BASE design parameter.

The assigned CSR addresses are still temporary, we will provide the final assignment in deliver-
able D3.4 after the demonstrator integration is finished.

3.1.1.7 Evaluation prototype

The evaluation prototype consists of a CV32E40S core enhanced with NXP-AT’s security exten-
sions, including the here described IEE extension, embedded in one of the following evaluation
environments:

• CORE-V Verification Environment
The enhanced core replaces stock core in the CV32E40S testbench. The resulting test-
bench can be evaluated using RTL simulation (tested with the Xcelium simulator).
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• CORE-V MCU
The enhanced core replaces the CV32E40P core in the CORE-V MCU design. The resulting
design can be synthesized to a Nexys A7-100T or Genesys 2 FPGA board and evaluated
there (tested with Genesys 2).

A suite of self-checking tests has been written for the IEE extension. These tests can be and were
executed in both of the supported environments.

The evaluation prototype was tested on the Genesys 2 FPGA board (featuring a XC7K325T-
2FFG900C FPGA IC). The design was synthesized using Vivado v2024.1, targeting a frequency
of 50 MHz. The IEE extension increased the usage of lookup tables by 65.15 % (absolute: 5901)
and registers by 47.13 % (absolute: 1623) compared to the base CV32E40S core.

Initial PPA analysis using a 16 nm process with worst timing, targeting a clock frequency of
500 MHz (the highest frequency before area increases significantly), shows a 77.79 % (absolute:
37295 GE) area increase caused by the IEE extension compared to the base CV32E40S core.
The IEE extension increased the combinatorial delay of the critical path by 16 % compared to the
base CV32E40S core.

While these increases are significant, memory encryption is often required for security-sensitive
products.
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3.1.2 Backward-Edge Control Flow Integrity (BCFI) – NXP-AT

3.1.2.1 IP Card

Basic Info

IP name Backward-Edge Control Flow Integrity (BCFI)
License Proprietary Closed Source
Repository N/A

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y (complies partly with Zicfiss extension [23])
Memory mapped? N
Protocol N/A
Address Map N/A

Initiator Interface
Protocol

N/ACached?
IOMMU?

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA N/A

Software

Compiler Requires specialized compiler? Y
Compiler repository N/A

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? N
(if standalone sim) SW requirements? N/A
Integration documented / examples? N/A

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (Xcelium)
Open-source simulation? N

Evaluation PPA results available? Y

3.1.2.2 General Information

According to Google Project Zero, memory corruption vulnerabilities are the most used path to
gain unintended remote control over digital devices [15]. In 2023, 75 % of zero-day exploits in
the wild were based on memory corruption vulnerabilities. Programming languages like C and
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C++ that offer neither memory nor type safety are especially affected. While memory-safe pro-
gramming languages (like Rust) gain momentum, C is still one of the most popular programming
languages [7], especially for embedded system development. Making matters worse, constrained
embedded environments include only subsets of the defense mechanisms employed in larger
systems (e.g., no address space layout randomization or only with low entropy), leading to easier
exploitation. Hence, during the transition period to memory-safe programming languages or for
legacy code, additional security layers are needed to mitigate these attack paths, especially for
constrained embedded devices.

The exploitation of memory safety vulnerabilities may enable an attacker to modify the program
behavior and take over control. For example, the attacker could replace function return addresses
spilled on the stack with addresses containing attack gadgets. Such attacks, which aim to modify
the backward-edge control flow of programs, are among the most common and known ones. A
typical memory safety issue is a buffer overflow vulnerability, which occurs when user input is not
correctly sanitized. For example, missing bound checks that otherwise ensure the user input has
a valid length, could allow an attacker to craft an input that overwrites the return address on the
stack when (part of) the input is copied to internal data structures.

Modern systems feature a variety of countermeasures, like stack canaries and Address Space
Layout Randomization (ASLR) to mitigate these attacks. However, these countermeasures have
weaknesses and can be bypassed. For example, both are vulnerable to information disclosure at-
tacks. A more recent countermeasure, not suffering from these weaknesses, are shadow stacks.
In a system with this countermeasure, return addresses are stored on an isolated shadow stack
in addition to the regular stack. The isolation guarantees that only special instructions can access
the shadow stack while regular memory operations cannot access it. Therefore, an attacker can
only overwrite return addresses on the regular stack, but not the duplicates on the shadow stack.
Before executing the return in the function epilogue, the return address from the regular stack is
compared with the return address on the shadow stack to detect attacks. RISC-V International
ratified a shadow stack design for RISC-V, the Zicfiss extension [24].

As this deliverable provides updated information about the IP state since Deliverable D 3.1, please
refer to Section 3.1.2 in Deliverable D 3.1 for additional information about the Backward-Edge
Control Flow Integrity (BCFI) module.

3.1.2.3 Purpose and Scope

While the Zicfiss extension requires a MMU to isolate the shadow stack, our BCFI extension
isolates the shadow stack cryptographically using a tweakable memory encryption engine like
NXP-AT’s IEE extension (see Section 3.1.1). The cryptographical isolation is achieved by using
distinct encryption tweaks for memory accesses resulting from shadow stack operations, differen-
tiating them from regular memory accesses. Further, a hash value uniquely identifying the current
return address chain is stored in an isolated CSR. The previous (intermediate) hash values are
spilled to the shadow stack instead of the actual return addresses, preventing the replay of en-
crypted return addresses (the topmost hash value depends on all previous ones). When returning
from a function, the current and previous hash value are passed to the inverse hash function to
reconstruct the return address. For more information about the concept of our BCFI extension,
which is based on the PACStack paper [20], see the detailed description in Section 3.1.2.2 of
Deliverable D3.1.
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The BCFI extension can be added with little overhead to systems already including a tweakable
memory encryption engine (i.e., needed to fulfill the security requirements) and does not rely on
the presence of an MMU. Further, it offers better protection against physical attacks.

3.1.2.4 Refined architecture description

As we were not able to find an integration opportunity for our IPs within the official ISOLDE
demonstrators, we instead collaborate with the TRISTAN project, integrating our features into
the NFC_FPGA demonstrator (WI6.4.1). Hence, the architecture of this extension was updated
to match the new integration target where an extended CV32E40S RISC-V core will be used.

Figure 3.6 illustrates a CV32E40S core enhanced with the IEE module from Section 3.1.1 and the
BCFI extension. The components of the core that have been modified by the BCFI extension are
highlighted in orange. In the following paragraphs, the added and modified modules are described
in more detail.
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Figure 3.6: Architecture of the BCFI extension

Decoders

The BCFI extension introduces new instructions for manipulating the shadow stack (see Sec-
tion 3.1.2.5 of Deliverable D3.1 for more details). Hence, the extension adapts the existing com-
pressed and regular decoder.

CSR

The configuration and state of the BCFI extension are stored in CSRs. Hence, the extension adds
the required CSRs or CSR fields (see Section 3.1.2.5 of Deliverable D3.1 for more details) to the
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CSR unit. Note that the senvcfg CSR can be ignored as CV32E40S processor does not support
supervisor mode. The added CSRs are implicitly accessed by the BCFI execution units in the
execute and writeback stage. Additionally, they may be explicitly accessed by CSR read or write
instructions. The BCFI extension adjusts the forwarding logic to ensure that results for implicit or
explicit reads are passed from the writeback stage when necessary.

BCFI execution unit (execute)

Most of the functionality of the BCFI extension is implemented as a new execution unit in the
execute stage. However, computing the inverse hash using the IUHF module (needed to restore
the return address during executing sslw and sspopchk) can only be done in the writeback stage,
as it requires the load of the previous hash value to be completed. The BCFI execution unit in the
execute stage receives information from the ID-EX pipeline register and the current BCFI state
from the corresponding CSRs (either directly or forwarded), performs the supported operations,
and outputs an updated state and further control signals (e.g., security violations passed to the
controller). As some BCFI operations (i.e., sspush, sslw or sspopchk) need to interact with mem-
ory, the execution unit is also connected to the LSU. To update the hash value representing the
return address chain (done during executing sspush), a universal hash function (UHF) module is
included in the BCFI execution unit. The UHF is a scaled down version (i.e., computations are
performed over a smaller binary field) of the GHASH function [9, Sec. 6.4] used in the GCM
encryption mode.

BCFI execution unit (writeback)

As mentioned in the previous paragraph, the inverse hash calculation can only be performed in the
writeback stage as it requires the LSU to provide the result of the necessary memory read. If the
BCFI execution unit in the writeback stage is active (only for the sslw and sspopchk instructions),
then it uses the data from the EX-WB pipeline register and the output from the LSU to compute
the inverse hash representing the reconstructed return address. Next, the result is either passed
as destination register content (in case of sslw) or it is compared with the provided return address
(in case of sspopchk). If the comparisons fails, then a security violation is passed to the controller.
Finally, the execution unit roles back the topmost hash value to the previous one by setting the
sstca CSR to the data received from the LSU with the help of the CSR unit.

LSU

Some BCFI operations (i.e., sspush, sslw or sspopchk) need to interact with the memory. Hence,
the extension modifies the logic in the execute stage so that the memory access address and write
data can be routed from the BCFI execution unit to the LSU. Further, the BCFI unit passes another
signal to the LSU that indicates if the memory access request is a shadow stack transaction. This
signal is passed on by the LSU to the D Tweak unit as part of the internal OBI data request signals.

D Tweak

The D Tweak module provides the active encryption tweak to the Data IEE module (see Sec-
tion 3.1.1). It is connected to the OBI data interface and the CSRs, so that it has access to all
information needed to derive the required encryption tweak. The CTM extension incorporates
logic into the D Tweak unit to determine if an OBI data request is a shadow stack access by
inspecting the corresponding signal added by the LSU to the request. The D Tweak module
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encodes this information as one bit of the encryption tweak passed to the Data IEE module.

Controller

The extension adapts the existing controller implementation so that a software check exception
is raised if one of the BCFI execution units report a security violation. Additionally, it extends the
forwarding logic as explained in the CSR paragraph.

3.1.2.5 Interfaces

The BCFI extension is tightly integrated in the CV32E40S processor and requires NXP-AT’s IEE
extension.

3.1.2.6 ISA specialization

The specification of the ISA extension did not change since Deliverable D3.1. The BCFI extension
adds instructions to manipulate data on the shadow stack allowing to push (sspush, c.sspush),
pop (sspopchk, c.sspopchk), load (sslw), and atomically swap words (ssamoswap). Further, it
adds instructions for receiving (ssrdp) and increasing the shadow stack pointer value (ssincp,
c.ssincp). To enable the configuration of the extension, the mseccfg and menvcfg CSRs are
modified. The universal hash function is parametrized with the ssuhfx and ssuhfxinv CSRs. The
shadow stack pointer is stored in the ssp and the topmost hash value in the sstca CSR.

The assigned CSR addresses are still temporary, we will provide the final assignment in deliver-
able D3.4 after the demonstrator integration is finished.

3.1.2.7 Evaluation prototype

The evaluation prototype and available evaluation environments are the same as described in
Section 3.1.1.7 for NXP-AT’s IEE module.

A suite of self-checking tests has been written for the BCFI extension. These tests can be and
were executed in both of the supported environments.

The evaluation prototype was tested on the Genesys 2 FPGA board (featuring a XC7K325T-
2FFG900C FPGA IC). The design was synthesized using Vivado v2024.1, targeting a frequency
of 50 MHz. The BCFI extension increased the usage of lookup tables by 8.08 % (absolute: 732)
and registers by 7.98 % (absolute: 275) compared to the base CV32E40S core.

Initial PPA analysis using a 16 nm process with worst timing, targeting a processor clock frequency
of 500 MHz (the highest frequency before area increases significantly), shows a 9.13 % (absolute:
4377 GE) area increase caused by the BCFI extension compared to the base CV32E40S core.

D3.2 ISOLDE - public 29.04.2025



Deliverable D3.2 ISOLDE Page 19

3.1.3 Cryptographically Tagged Memory (CTM) – NXP-AT

3.1.3.1 IP Card

Basic Info

IP name Cryptographically Tagged Memory (CTM)
License Proprietary Closed Source
Repository N/A

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol N/A
Address Map N/A

Initiator Interface
Protocol

N/ACached?
IOMMU?

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA N/A

Software

Compiler Requires specialized compiler? Y
Compiler repository N/A

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? N
(if standalone sim) SW requirements? N/A
Integration documented / examples? N/A

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (Xcelium)
Open-source simulation? N

Evaluation PPA results available? Y

3.1.3.2 General Information

As this deliverable provides updated information about the IP state since Deliverable D 3.1, please
refer to Section 3.1.4 in Deliverable D 3.1 for additional information about the Cryptographically
Tagged Memory (CTM) module.
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3.1.3.3 Purpose and Scope

As explained in Section 3.1.2, memory corruption vulnerabilities are the most used path to gain
remote control over computing devices. To mitigate attacks exploiting memory safety issues to
modify function return addresses spilled on the stack, we introduced the BCFI extension in Sec-
tion 3.1.2. Further, a device may isolate different tasks logically (i.e., using memory protection or
management units) or cryptographically (using memory encryption engines, see Section 3.1.1 for
more information). However, there exist other fine-grained assets within a task’s stack, heap, or
global objects that are of interest to attackers, such as:

• Function pointers
• Values indirectly affecting the control flow (e.g., evaluated in conditional branches)
• Sensitive data like cryptographic keys

These sensitive assets can not be sufficiently protected with the mentioned technologies and
hence an additional mechanism is required.

Memory tagging can be used to mitigate this security gap. It assigns additional metadata, the
color, with memory blocks of a defined size. Every genuine pointer and its associated memory
blocks are assigned the same statistically unique color at memory allocation. Therefore, only the
designated pointer received from the allocator can be used to access the allocated data. This
lock-and-key mechanism prevents out-of-bound accesses (spatial bugs) using another pointer or
accesses using a dangling pointer (temporal bugs).

Note that the colors must be stored in addition to the rest of the data, increasing the overall
memory usage. Therefore, existing memory tagging implementations, like Armv8.5-A MTE [1],
allocate only few bits for the colors, making them unsuitable for security purposes. Cryptograph-
ically tagged memory [21] avoids this additional memory overhead by implicitly linking memory
blocks with the genuine color. This implicit association is achieved by including the color in the
tweak for memory encryption and decryption. Hence, assuming a memory encryption engine is
available, this technique allows to use more bits for the color without increasing the memory over-
head. The major behavioral difference to the original scheme is that an attacker can still misuse
pointers to access sensitive memory blocks. However, it is much harder to perform a successful
attack as access triggered from a misused pointer will not be useful:

• Suppose misusing a pointer triggers an out-of-bounds read of a memory location associated
with a different color. Then, the decryption results are wrong as the color does not match,
ensuring the confidentiality of the corresponding data.

• Suppose misusing a pointer triggers an out-of-bounds write to a memory location associated
with a different color. Then, the color of the genuine pointer will not match the one of the
misused pointer. Hence, the attacker cannot modify the data in a controlled way.

Until now, cryptographically tagged memory has only been implemented on 64-bit processors,
where unused bits in the virtual address space are utilized to store the tags. The CTM extension
adds cryptographically tagged memory to 32-bit processors without requiring a memory manage-
ment unit. The smaller address space poses additional challenges as usually no unused bits in
pointers are available, and therefore, a different strategy to embed the colors in tagged pointers is
needed.
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3.1.3.4 Refined architecture description

As we were not able to find an integration opportunity for our IPs within the official ISOLDE
demonstrators, we instead collaborate with the TRISTAN project, integrating our features into
the NFC_FPGA demonstrator (WI6.4.1). Hence, the architecture of this extension was updated
to match the new integration target where an extended CV32E40S RISC-V core will be used.

Figure 3.7 illustrates a CV32E40S core enhanced with the IEE module from Section 3.1.1 and the
CTM extension. The components of the core that have been modified by the CTM extension are
highlighted in orange. In the following paragraphs, the added and modified modules are described
in more detail.
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Figure 3.7: Architecture of the CTM extension

Decoder

The CTM extension introduces two new instructions to the decoder for tagging (ctmtag) and
untagging (ctmuntag) pointers (see Section 3.1.4.4 in Deliverable D 3.1 for more information).

CSR

The extension adds the CTME field to the mseccfg CSR, allowing software to disable CTM (see
Section 3.1.4.4 in Deliverable D 3.1 for more information).

ALU

The extension introduces two new operations to the ALU. The ctmtag operation adds a random
color generated by a pseudorandom number generator (PRNG) to the pointer in the source reg-
ister, while the ctmuntag operation removes the color from the pointer in the source register.
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PRNG

The CTM extension adds a hardware PRNG to the core, or reuses an existing one. The PRNG is
needed for generating the colors used to tag pointers. The entropy of the used PRNG should at
least match the color field size so that the probability of neighboring memory blocks with matching
colors is as low as possible. Depending on the threat model different PRNG designs can be used:

• If the assumed attacker can only inject faults, then a PRNG based on a linear-feedback shift
register (LFSR) is sufficient, as the attacker cannot observe its outputs or state.

• If the assumed attacker can only perform logical attacks (allowing the attacker to observe
the PRNG outputs), then a continuously-clocked LFSR with a sufficiently large cycle could
be used. An attacker would then need to predict how often the LFSR will have been clocked
at the next color generation to leak the next color, which is hard for a logical attacker and
complex systems.

• Finally, if the assumed attacker is very advanced, then a cryptographically secure PRNG
(CSPRNG) design must be used. For example, designs described by the NIST SP 800-90A
Rev. 1 standard [3] could be used.

D Tweak

The D Tweak module provides the active encryption tweak to the Data IEE module (see Sec-
tion 3.1.1). It is connected to the OBI data interface and the CSRs, so that it has access to all
information needed to derive the required encryption tweak. The CTM extension adds logic to the
D Tweak unit for extracting the color from tagged pointers, which is passed to the Data IEE module
as part of the encryption tweak. Figure 3.8 shows the operation of the color extraction logic. The
color extraction logic separates the color if CTM is enabled and the pointer is tagged (indicated
by the bit at position CTM_EXPLICIT_SELECTION_BIT). Furthermore, if the pointer is tagged, the
color is removed from the address, and an offset is added to the result before it is passed on
as the access address to the Data IEE. This addressing scheme allows the system integrator to
configure a region in the address space that can be protected using CTM, provided the MSB of
addresses is not needed and can be utilized to indicate tagged pointers. The maximum size of
the protected region depends on the number of bits used for the color.

3.1.3.5 Interfaces

The CTM extension is tightly integrated in the CV32E40S processor and requires NXP-AT’s IEE
extension.

3.1.3.6 ISA specialization

The specification of the ISA extension did not change since Deliverable D3.1. The CTM extension
adds two instructions for tagging (ctmtag) and untagging (ctmuntag) pointers. Further, it adds the
CTME field to the mseccfg CSR, allowing software to disable CTM.

3.1.3.7 Evaluation prototype

The evaluation prototype and available evaluation environments are the same as described in
Section 3.1.1.3 for NXP-AT’s IEE module.
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Figure 3.8: CTM color extraction logic

A suite of self-checking tests has been written for the CTM extension. These tests can be and
were executed in both of the supported environments.

The evaluation prototype was tested on the Genesys 2 FPGA board (featuring a XC7K325T-
2FFG900C FPGA IC). The design was synthesized using Vivado v2024.1, targeting a frequency
of 50 MHz. The CTM extension increased the usage of lookup tables by 0.99 % (absolute: 90)
and registers by 1.02 % (absolute: 35) compared to the base CV32E40S core.

Initial PPA analysis using a 16 nm process with worst timing, targeting a processor clock frequency
of 500 MHz (the highest frequency before area increases significantly), shows a 0.03 % (absolute:
14 GE) area increase caused by the CTM extension compared to the base CV32E40S core.
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3.1.4 Enclave Memory Isolation (EMI) – NXP-AT

3.1.4.1 IP Card

Basic Info

IP name Enclave Memory Isolation (EMI)
License Proprietary Closed Source
Repository N/A

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol N/A
Address Map N/A

Initiator Interface
Protocol

N/ACached?
IOMMU?

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA N/A

Software

Compiler Requires specialized compiler? N
Compiler repository N/A

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? N
(if standalone sim) SW requirements? N/A
Integration documented / examples? N/A

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (Xcelium)
Open-source simulation? N

Evaluation PPA results available? Y

3.1.4.2 General Information

Modern systems often run a range of workloads on one physical general-purpose processor as
it is cost-efficient to reuse existing infrastructure. These workloads may include sensitive assets
and their vendors may not trust each other. Hence, to guarantee the confidentiality and integrity
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of the assets, it is necessary to isolate the workloads from each other. Traditionally, this isolation
is realized by dedicated hardware components (memory protection and management units) that
enforce that tasks in lower privilege modes can only access allowed regions. The operating sys-
tem, which runs in a higher privilege mode, sets up the memory regions and configures suitable
access permissions for each task.

However, research has shown that this logical isolation is insufficient against a range of physical
attacks techniques (e.g., probing the memory bus, injecting faults flipping bits in memory [25, 19],
or injecting faults affecting the memory protection configuration by the operating system [22]).
Adding a memory encryption engine that encrypts all data before it is stored in memory miti-
gates the first attack example, raises the bar for the second as injecting controlled modifications
is harder, but does not help against the third example without additional countermeasures.

3.1.4.3 Purpose and Scope

As described in the previous section, logical isolation is insufficient to protect sensitive information
in a malicious environment. Hence, the purpose of the EMI module is to enable workload-specific
memory encryption for RISC-V cores together with NXP-AT’s Inline Encryption Engine (IEE) mod-
ule (see Section 3.1.1). Further, the design of the EMI module mitigates the impact of fault attacks
including skipping instructions during the context switch. Combining the classical logical isolation
and the cryptographic isolation provided by the EMI module results in stronger security guarantees
(e.g., mitigation of the previously explained physical attacks). These stronger guarantees benefit
use cases requiring strong isolation between workloads like trusted execution environments.

3.1.4.4 Refined architecture description

As we were not able to find an integration opportunity for our IPs within the official ISOLDE
demonstrators, we instead collaborate with the TRISTAN project, integrating our features into
the NFC_FPGA demonstrator (WI6.4.1). Hence, the architecture of this extension was updated
to match the new integration target where an extended CV32E40S RISC-V core will be used.

Figure 3.9 illustrates a CV32E40S core enhanced with the IEE module from Section 3.1.1 and the
EMI extension. The components of the core that have been modified by the EMI extension are
highlighted in orange. In the following paragraphs, the added and modified modules are described
in more detail.

CSR

The EMI extension includes new CSRs, which are combined to form an enclave tweak (see Fig-
ure 3.10). The extension adds these CSRs to the existing CSR unit. As these CSRs influence
memory encryption, it must be ensured that the pipeline is flushed when they are written. Other-
wise, instruction fetches or regular memory access in previous pipeline stages may use a wrong
tweak leading to wrongly decrypted data. Therefore, the EMI extension also extends the existing
logic in the CSR unit that determines for which CSR writes the pipeline should be flushed.
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Figure 3.9: Architecture of the EMI extension

I Tweak and D Tweak

The enclave tweaks, which are passed to NXP-AT’s IEE modules and influence the memory en-
cryption, are constructed as detailed in the previous deliverable and illustrated in Figure 3.10. The
I Tweak and D Tweak modules provide the active encryption tweak to the Instruction and Data IEE
module (see Section 3.1.1). They are connected to the core’s OBI interfaces and the CSRs, so
that they have access to all information needed to derive the required encryption tweak. As the
CV32E40S core does not support S mode and does not include caches, the S mode modifier
CSRs are not needed. The EMI extension adds logic to the I Tweak and D Tweak unit combining
the modifiers stored in CSRs to form enclave tweaks, which are passed to the IEE modules as
part of the encryption tweak.

3.1.4.5 Interfaces

The EMI extension is tightly integrated in the CV32E40S processor and internally connected to
NXP-AT’s IEE modules.

3.1.4.6 ISA specialization

The specification of the ISA extension did not change since Deliverable D3.1. The EMI exten-
sion adds multiple CSRs (mfetchmod{0,1}, ufetchmod{0,1}, mloadmod{0,1}, uloadmod{0,1},
mstoremod{0,1}, ustoremod{0,1}) representing modifiers that are combined to an enclave tweak
depending on the current privilege level and access type (load, store, fetch), as shown in Fig-
ure 3.10.

The assigned CSR addresses are still temporary, we will provide the final assignment in Deliver-
able D3.4 after the demonstrator integration is finished.

D3.2 ISOLDE - public 29.04.2025



Deliverable D3.2 ISOLDE Page 27

data_enclave_tweako Pass on to 
Data IEE module

data_priv_i

emi_csr.ufetchmod1 ||
emi_csr.ufetchmod0

emi_csr.mfetchmod1 ||
emi_csr.mfetchmod0

emi_csr.uloadmod1 ||
emi_csr.uloadmod0

emi_csr.mloadmod1 ||
emi_csr.mloadmod0

emi_csr.ustoremod1 ||
emi_csr.ustoremod0

emi_csr.mstoremod1 ||
emi_csr.mstoremod0

data_we_i
obi_data_if.s_req.we

instr_enclave_tweak_o Pass on to 
Instruction IEE module

obi_instr_if.s_req.prot
instr_priv_i
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obi_instr_if.s_req.prot
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Figure 3.10: EMI enclave tweak formation logic

3.1.4.7 Evaluation prototype

The evaluation prototype and available evaluation environments are the same as described in
Section 3.1.1.3 for NXP-AT’s IEE module.
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A suite of self-checking tests has been written for the EMI extension. These tests can be executed
in both of the supported environments.

The evaluation prototype was tested on the Genesys 2 FPGA board (featuring a XC7K325T-
2FFG900C FPGA IC). The design was synthesized using Vivado v2024.1, targeting a frequency
of 50 MHz. The EMI extension increased the usage of lookup tables by 3.60 % (absolute: 326)
and registers by 10.74 % (absolute: 370) compared to the base CV32E40S core.

Initial PPA analysis using a 16 nm process with worst timing, targeting a processor clock frequency
of 500 MHz (the highest frequency before area increases significantly), shows a 7.91 % (absolute:
3764 GE) area increase caused by the EMI extension compared to the base CV32E40S core.
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3.1.5 Forward-Edge Control Flow Integrity (FCFI) – NXP-AT

3.1.5.1 IP Card

Basic Info

IP name Forward-Edge Control Flow Integrity (FCFI)
License Proprietary Closed Source
Repository N/A

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol N/A
Address Map N/A

Initiator Interface
Protocol

N/ACached?
IOMMU?

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA N/A

Software

Compiler Requires specialized compiler? Y
Compiler repository N/A

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? N
(if standalone sim) SW requirements? N/A
Integration documented / examples? N/A

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (Xcelium)
Open-source simulation? N

Evaluation PPA results available? Y

3.1.5.2 General Information

Systems operating in potentially malicious environments are subject to logical and physical at-
tacks. Fault injection attacks based on optical, electromagnetic, clock, or voltage glitches are a
form of active physical attacks. The injected disturbances can cause different effects in a pro-
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cessor depending on the affected logic and form of the fault signal. For example, the processor
may skip instructions or execute altered instructions. Attackers exploit these effects to bypass
security measures, e.g., by skipping their configuration or enablement. Research demonstrated
various successful attacks exploiting instruction skips introduced by fault attacks. Among those
are bypassing signature verification to load malicious firmware [6] or skipping the reconfiguration
of memory protection units to gain access to protected data [22].

3.1.5.3 Purpose and Scope

The FCFI extension ensures the integrity of the instruction stream by calculating a running check-
sum over the executed instructions and regularly comparing the current checksum value with
pre-computed reference values. If a mismatch is detected, then a software check exception is
raised. Hence, the FCFI extension enables the detection of fault injection attacks that aim to
modify the instruction stream.

Even with sophisticated fault injection attacks, such as single-spot laser fault injection, it is chal-
lenging to arbitrarily alter multiple instructions. The potential outcomes are probabilistic and their
probabilities depend on the configuration of the fault injection setup and the technology node used
to manufacture the IC. Further, considering a single-spot laser fault injection setup, an attacker
would need to realign the laser to prepare the next fault injection, which is not feasible before the
next checksum check. Consequently, even for advanced attackers it is hard to hide introduced
errors by trying to modify subsequent instructions before the next checksum check occurs.

Further, the FCFI extension also includes instructions that allow implementing landing pads.
Hence, it can also detect modifications of forward-edge control flow transfers (indirect calls) by
logical attacks. Note that also the Zicfilp RISC-V extension offers similar landing pads, but it
cannot be efficiently combined with FCFI’s instruction stream integrity feature.

However, the FCFI extension cannot ensure the integrity of the data memory. Hence, it also can-
not mitigate attacks aiming to modify backward-edge control flow transfers (i.e., altering function
return addresses on the stack). To reduce the attack surface further, it can be combined with
NXP-AT’s BCFI module described in Section 3.1.2.

3.1.5.4 Refined architecture description

The FCFI extension extends the ISA of the base processor to enable two high-level features:

• Instruction stream integrity (mitigating physical fault injection attacks)
• Landing pads for forward-edge control flow integrity (mitigating logical attacks aiming to

overwrite function pointers)

After reset, both features are disabled. Software must activate them using dedicated instructions
(csjal, csjalr) or CSR fields (ucsstate.LPE). To better understand the necessary changes in
the CV32E40S core, first the functionality of the high-level features is described.

The instruction stream integrity feature requires a 16-bit CRC module allowing to update a CRC
value incrementally. Terminator instructions, which end a basic block (a sequence of instructions
that executes sequentially), initialize the CRC value to the PC value of the next basic block. In
the context of the FCFI extension, the following instructions of the rv32ic architecture and the
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extension itself are terminating instructions: b{eq,ne,lt,ge,ltu,geu}, c.b{eqz,nez}, jal, jalr,
c.j, c.jr, c.jal, c.jalr, csb{eq,ne,lt,ge,ltu,geu}, cscheck, c.cscheck, csjal, and csjalr.
If further extensions present in the target processor include instructions that change the control
flow, then support for them needs to be added to the FCFI extension.

During the execution of a basic block, the CRC value is continuously updated with the encoding
of the instruction to be executed next. Instead of updating the CRC value using instruction encod-
ings, the decoder output signals could have been used. This alternative implementation would
have the advantage of also ensuring the integrity of the decoder signals. However, it would also
require the compiler to know details about the microarchitecture, leading to significant disadvan-
tages (maintenance, IP protection).

When a terminator instruction is executed, then the FCFI extension compares the current CRC
value with a reference value computed by a software tool. Dedicated instructions (csref, c.csref)
allow to pass the bits of the reference CRC values to the FCFI extension during the execution of
a basic block. It is assumed that code sections cannot be modified by an attacker, preventing the
direct modification of reference values. When the computed CRC value does not match the refer-
ence value or any other of the checks detailed in Section 3.1.5.6 fails, then a software check ex-
ception is raised. The minimum required security level (i.e., the minimum number of reference bits
compared at CRC checks) can be enforced using the ucscontrol.NEED11 or ucscontrol.NEED5
CSR fields.

During trapping to machine mode, the processor suspends the FCFI extension by setting the
ucsstate.EXCP bit. Suspending the extension allows software to save the FCFI state of the in-
terrupted task and restore the state of a different task. While the FCFI extension is suspended,
no updates of its state are performed. When returning from machine to user mode (during ex-
ecution of the mret instruction), the ucsstate.EXCP bit is cleared. The FCFI extension is also
suspended during debug mode (independently of the ucsstate.EXCP bit), so that it does not in-
terfere with debug implementations using the processor’s pipeline (i.e., execution-based debug
implementations).

Additionally, the FCFI extension implements a watchdog to ensure that CRC checks occur af-
ter a configurable number of retired instructions. This watchdog can be optionally activated
(ucswdog.WDE). If activated, then the compiler must insert dedicated instructions (cscheck) in
long basic blocks to avoid the expiry of the watchdog. The watchdog’s counter is decremented for
every non-terminating instruction and a software check exception is raised if the counter reaches
zero.

The landing pad functionality can operate together or independent of the instruction stream in-
tegrity feature. In the first case, during an indirect call instruction, the CRC value is initialized
with a label value (provided using cslabel or c.cslabel) instead of the target address. The label
provided by the compiler should be derived from the function signature of genuine target func-
tions and the software tool computing the reference CRCs must take the changed initialization
into account. Then, the CRC values are influenced by the label and the next CRC check will fail if
an attacker diverted the control flow to a function with a wrong signature. If a function is invoked
both directly and indirectly, distinct entry points should be used for each type of call to ensure
compatibility.
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When the landing pad functionality operates independently of the instruction stream integrity fea-
ture (i.e., ucsstate.LPE is set), then the first instruction after indirect calls must be a landing
pad (cscheck or c.cscheck). Otherwise, a software check exception is raised. Optionally, finer-
grained protection can be achieved by enforcing that labels are provided before indirect calls using
the cslabel or c.cslabel instruction (ucscontrol.NEEDLPLABEL). The reference labels must then
be provided with the landing pad instructions (cscheck or c.cscheck), which check if the current
label matches the reference label.

In Figure 3.11, the parts of the CV32E40S core modified by the FCFI extension are highlighted
in orange. In the following paragraphs, the added and modified modules are described in more
detail.
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Figure 3.11: Architecture of the FCFI extension

Decoders

The FCFI extension introduces new instructions and modifies the behavior of existing instructions,
as detailed in Section 3.1.5.6. Hence, the extension adapts the existing compressed and regular
decoder. The introduced branch (csb{eq,ne,lt,ge,ltu,geu}) and call (csjal, csjalr) instruc-
tions use a new instruction format. Therefore, the FCFI extension also modifies the unit computing
the target PC of instructions changing the control flow and the destination register selection in the
instruction decode stage.

CSR

The configuration and state of the FCFI extension is stored in user-accessible CSRs. Hence,
the extension adds the necessary CSRs (see Section 3.1.5.6) to the CSR unit. These CSRs are
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implicitly accessed by the FCFI execution unit. Additionally, they may be explicitly accessed by
CSR read or write instructions. The extension adjusts the forwarding logic to ensure that results
for implicit or explicit reads are passed from the writeback stage when necessary. If explicit and
implicit writes occur in parallel (e.g., there is a CSR write instruction in the execute stage and the
FCFI execution unit outputs an updated CRC value), then the writes are merged in the execute
stage.

FCFI execution unit

The core functionality of the FCFI extension is implemented as a new execution unit in the execute
stage. This unit receives information about the instruction to be executed from the ID-EX pipeline
register and the current FCFI state from the corresponding CSRs (either directly or forwarded),
performs the necessary operations (e.g., updating the CRC value or decrementing the watchdog
counter), and outputs an updated state and further control signals (e.g., security violations passed
to the controller).

Controller

The extension adapts the existing controller implementation so that an exception is raised if the
FCFI execution unit reports a security violation. Additionally, it extends the forwarding logic
as explained in the CSR paragraph. Further, the modified controller triggers the setting of the
ucsstate.EXCP bit during trap entry, which suspends FCFI operations. Finally, the modified con-
troller suspends the FCFI extension during debug entry and debug mode. This is necessary as
debug operations are executed using the CV32E40S’s pipeline (i.e., execution-based debug im-
plementation). Hence, suspending FCFI ensures that debug mode does not interfere with the
FCFI state, and that the instruction stream integrity feature does not interfere with debug opera-
tions. As an authenticated debug user has anyway full system access, suspending FCFI does not
impact security.

Given that one of the FCFI extension’s objectives is to mitigate fault attacks, the implementation of
the FCFI module and its critical components must be security-hardened. This includes duplicating
CSRs that contain the state and configuration, as well as related signals and the next PC logic.

3.1.5.5 Interfaces

The FCFI extension is tightly integrated in the CV32E40S processor.

3.1.5.6 ISA specialization

The FCFI extension modifies the ISA of the CV32E40S core. In the following, the modified and
new design parameters, CSRs, instructions, and exceptions are introduced.

Design Parameters
Table 3.2 introduces the design parameters impacting the FCFI extension.

CSRs
In Table 3.3, the CSRs added by the FCFI extensions are described. The introduced CSRs are
accessible by all privilege modes and are zero initialized at reset. The final addresses will be
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Parameter Default Value Function
FCFI_ENABLE 1 Determines if the FCFI extension is included in the design.

Table 3.2: Design parameters of the FCFI extension

assigned once the integration with the processor used in the targeted demonstrator is finished
and provided with Deliverable D3.4.

CSR Index Field Bits Function
ucsstate TBD EXCP 25 Set upon entering a trap and cleared upon

exiting (suspends FCFI)
LPE 18 Landing pads are enabled
LPX 17 Landing pad is expected
CSE 16 Instruction stream integrity is enabled
CURCRC 15...0 Current CRC value

ucsrefcrc TBD VALID4 18 Bits 3...0 of ucsrefcrc.VALUE are valid
VALID5 17 Bits 4...0 of ucsrefcrc.VALUE are valid
VALID11 16 Bits 15...5 of ucsrefcrc.VALUE are valid
VALUE 15...0 Collected reference CRC value

ucslabel TBD VALID5 17 Bits 4...0 of ucslabel.VALUE are valid
VALID11 16 Bits 15..5 of ucslabel.VALUE are valid
VALUE 15...0 Label value

ucswdog TBD WDE 16 Watchdog for ensuring regular CRC checks
is enabled

INIT 15...8 Initial value for watchdog
CUR 7...0 Current value of watchdog

ucsinitmask TBD MASK 15..0 XOR-mask for initializing the current CRC
ucscontrol TBD NEEDLPLABEL 5 Enforce usage of labels for landing pads

NEED11 1 Need at least 11 reference bits
NEED5 0 Need at least 5 reference bits

Table 3.3: CSRs introduced by the FCFI extension

Instructions

Table 3.4 outlines the added and modified instructions by the FCFI extension. In the context of the
FCFI extension, the terms ’active’ and ’enabled’ are not used synonymously. For example, FCFI
can be enabled but suspended (ucsstate.EXCP bit set) during the execution of a trap handler.

The distinction between jumps, calls and returns relies on the RISC-V ABI.

Table 3.4: Instructions added and modified by the FCFI extension

Instruction FCFI-related action
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csref (16 reference bits)
c.csref (11 reference bits)
cslabel (16 label bit)
c.cslabel (11 label bits)

These new instructions provide reference or label bits. When
the instruction stream integrity feature is active, the current CRC
value is updated with the instruction’s encoding (excluding the
reference or label bits).

b{eq,ne,lt,ge,ltu,geu},
jal (rd == x0),
jalr (rs1 != x1|x5, rd
== x0)

FCFI extends the existing RISC-V branches and jumps to update
and verify the current CRC value when the instruction stream
integrity feature is active. If the CRC check passes, the CRC
value is reset to the target address of the control transfer XORed
with ucsinitmask, and the watchdog is reset. If the CRC check
fails, a software check exception is raised.

csb{eq,ne,lt,ge,ltu,geu} These new branch instructions provide 5 reference bits in ad-
dition to the previously described behavior of regular branches.
To encode the reference bits, the branch range has been re-
duced to ±512B. Depending on the enforced security level
(ucscontrol.NEEDx), these instructions can load both the re-
quired reference bits and perform the branch, thereby reducing
code size overhead.

jal (rd != x0) FCFI extends existing RISC-V direct calls to update and verify
the CRC value, as previously described for branches. Addition-
ally, regular direct calls indicate control transfers to unprotected
functions. Hence, if the instruction stream integrity feature is ac-
tive, the ucsstate.CSE bit is backed up and cleared.

jalr (rd != x0) FCFI extends existing RISC-V indirect calls, similar to the direct
calls described above, but additionally requires a landing pad
instruction at the target address when the landing pad feature is
enabled.

csjal, csjalr These new instructions perform calls to protected functions.
They provide 4 reference bits, update, verify, and reset the CRC
value when the instruction stream integrity feature is active, as
described earlier for branches. If the label value is valid, then
the CRC value is reset to the label instead of the target address.
Additionally, they backup the current ucsstate.CSE bit when the
instruction stream integrity feature is active and then set the bit.
The destination register selection is limited to x1 or x5 to free up
encoding space for the reference bits.

jalr (rs1 == x1|x5, rd
== x0)

FCFI extends existing RISC-V returns so that they update and
verify the CRC value when the instruction stream integrity fea-
ture is active. Additionally, they restore the ucsstate.CSE bit if
FCFI is not suspended. Finally, if the instruction stream integrity
feature is active after restoring the state, the CRC value is reset
to the return address XORed with ucsinitmask.
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cscheck (16 reference bits)
c.cscheck (11 reference
bits)

When the instruction stream integrity feature is active, then these
new instructions provide 16 or 11 reference bits, update, verify,
and reset the CRC value to the address of the next instruction
XORed with ucsinitmask. Otherwise, when only the landing
pad feature is active, they use the reference bits as expected
label value, verify the current label value, and raise a software
check exception if there is a mismatch.

Machine mode trap FCFI modifies the trap entry behavior to suspend its operation
(sets ucsstate.EXCP), allowing its state to be saved and re-
stored by privileged software.

mret FCFI extends RISC-V trap return instructions to clear the
ucsstate.EXCP bit, resuming its operation.

Any other instruction When the instruction stream integrity feature is active, FCFI up-
dates the current CRC value using the encoding of each instruc-
tion to be executed.

Additionally, for any
instruction that is not a
landing pad (all except
c.cscheck and cscheck)

FCFI raises a software check exception when the landing pad
feature is enabled and a landing pad is expected (i.e., after an
indirect call).

Additionally, for any
instruction that is not a
terminating instruction

When the instruction stream integrity feature is active, FCFI
raises a software check exception if the watchdog value is zero.
Otherwise, it decreases the watchdog value.

Additionally, for any
instruction introduced by
FCFI (cs*)

FCFI raises a software check exception if it is suspended and
an FCFI instruction is executed, indicating an attempt to bypass
FCFI by suspending it.

Exceptions
In Table 3.5, the exceptions extended by the FCFI extension are described.

3.1.5.7 Evaluation prototype

The evaluation prototype and available evaluation environments are the same as described in
Section 3.1.1.3 for NXP-AT’s IEE module.

A suite of self-checking tests has been written for the FCFI extension. These tests can be and
were executed in both of the supported environments.

The evaluation prototype was tested on the Genesys 2 FPGA board (featuring a XC7K325T-
2FFG900C FPGA IC). The design was synthesized using Vivado v2024.1, targeting a frequency
of 50 MHz. The FCFI extension increased the usage of lookup tables by 8.15 % (absolute: 738)
and registers by 11.88 % (absolute: 409) compared to the base CV32E40S core.

Initial PPA analysis using a 16 nm process with worst timing, targeting a processor clock frequency
of 500 MHz (the highest frequency before area increases significantly), shows a 10.64 % (abso-
lute: 5102 GE) area increase caused by the FCFI extension compared to the base CV32E40S
core.
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Exception Code Description
SoftwareCheckException 18 Synchronous exception which is triggered when there are

violations of checks and assertions regarding the integrity
of software assets. The exact cause can be determined by
examining the xTVAL register:

• 20: FCFI detected an instruction stream integrity vi-
olation (CRC mismatch).

• 21: The FCFI watchdog expired as no check was
performed within the configured timeout.

• 22: FCFI encountered reference bits although it is
disabled and not suspended.

• 23: FCFI could not perform the instruction stream
integrity check due to missing reference bits.

• 24: FCFI could not perform the instruction stream
integrity check due to insufficient reference bits.

• 25: FCFI expected a landing pad, but there was
none.

• 26: FCFI expected a landing pad with an explicit la-
bel, but there was no label.

• 27: FCFI detected a landing pad size mismatch.
• 28: FCFI detected a landing pad value mismatch.
• 29: FCFI encountered an unexpected cscheck in-

struction.
• 30: The processor attempted to execute a FCFI in-

struction while FCFI is suspened.

Table 3.5: Exceptions extended by the FCFI extension
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3.1.6 Context-Aware Performance Monitor Counter (CA-PMC) – TRT

3.1.6.1 IP Card

Basic Info

IP name Context-Aware Performance Monitor Counter (CA-PMC)
License Open-source (SolderPad Hardware License v0.51)
Repository https://github.com/ThalesGroup/cva6-context-aware-monitoring.git

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y (see also CA-PMC-IF in Section 3.2.1.5)
Protocol AXI or AXI Lite
Address Map Y (see Section 3.2.1.5)

Initiator Interface
Protocol N/A
Cached? N
IOMMU? N

Interrupts Interrupts Y (generates 1 interrupt)

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N/A
ISA N/A

Software

Compiler Requires specialized compiler? N
Compiler repository -

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) (to be defined)
Standalone simulation? N
(if standalone sim) SW requirements? -
Integration documented / examples? Y

Synthesis
Is the IP synthesizable? Y

FPGA synthesis example available? Y (as component in CVA6 based
design, to be provided)

ASIC synthesis example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? Y (Verilator)

Evaluation PPA results available? N

3.1.6.2 General Information

As already presented in Section 3.3.1 of Deliverable D3.1, the Context Aware Monitoring frame-
work is a set of hardware IPs to enrich monitoring with software context information such as the
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currently running virtual machine in the hypervisor, the currently running process in the operating
system or the currently running thread/function at application level.

The Context Aware Monitoring framework is composed of 4 different hardware IPs defined in both
WP2 and WP3:

1. The CA-CORE extension extends the CVA6 [29] core design with an extra CSR register
storing the software context information, and providing both a software and a hardware
interface to setup and access the context information.

2. The CA-BUS extension decorates memory requests with information related to the soft-
ware context, both at core-level up to the L1 cache and at NoC level for DDR accesses on
the AXI bus.

3. The CA-PMC extension implements context-based performance monitor collection, filtering
collected hardware events based on the software context, counting event only for a specific
process of the operating system, or specific cryptographic function in the application.

4. The CA-PMC-IF extension (Section 3.2.1) provides a memory-mapped interface to the
software context and the monitored core performance monitor counters (PMCs) enabling
remote out-of-core monitoring.

CVA6 Core

L1 Cache Subsystem

AXI BUS

L2 Cache

MemCtrl

CA-PMCCA-PMC-IF

CA-PMC CA-PMC-IF

CA-PMCCA-PMC-IF

CA-BUS
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regfile

LD/ST
unitCA-PMCCA-PMC-IF

AXI
adapter

CA-CORE (T2.3)

CA-BUS (T2.2)

CA-PMC-IF (T3.3)

CA-PMC (T3.1)

Not addressed
in ISOLDE

Figure 3.12: Context Aware Monitoring architecture concept

Figure 3.12 shows an example of an architecture using the 4 IPs provided by the Context Aware
Monitoring framework.

Prior to ISOLDE, we developed METrICS [13], a software-level Measurement Environment for
multi-core Time Critical Systems dedicated at non-intrusively collecting performance monitoring
information. Such information is currently used to characterize the behavior of the software on
the hardware in terms of hardware resource usage, and anticipate the timing interference issue
inherent to multi-core systems.
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We then developed the Cyber BlackBox [14] as a way to couple this monitoring information with
machine learning to learn the expected behavior of a critical software, and detect deviations from
this expected behavior as anomalies indicator of either safety-related failures or security-related
cyber-attacks.

A drawback of a monitoring framework at software level, is to provide the user with a new attack
surface (the monitoring framework itself) introducing new potential vulnerabilities and the ability to
spy on the critical application.

The ISOLDE project and the open hardware ecosystem is an opportunity to implement such a
monitoring infrastructure at hardware level, with dedicated memories not accessible from the soft-
ware layer. The safety/security extensions presented above will allow us to collect context-aware
monitoring information at hardware level from a core dedicated to the monitoring the applicative
cores.

3.1.6.3 Purpose and Scope

The purpose of the CA-PMC IP is to implement the counters associated to the monitored IP,
providing a memory-mapped bus interface to control and read the counters, enabling the counters
access to a monitoring core.

3.1.6.4 Refined architecture description

The architecture of the CA-PMC IP depends on the IP it is monitoring, e.g. in Figure 3.12 the core
will have a different CA-PMC module, aka the CA-PMC Core module, than the one in the memory
controller, aka the CA-PMC Memory Controller module. To simplify the design of the different CA-
PMC modules the CA-PMC-IF module has been introduced. The CA-PMC-IF module provides an
uniform interface to all the CA-PMC modules. The CA-PMC-IF provides storage for the counters
and their management, and a memory-mapped bus interface, so all the CA-PMC modules can
provide the same interface to the monitoring core(s).

With the CA-PMC-IF module instantiated the only task the CA-PMC module needs to do is to
convert the monitoring element signals into events that the CA-PMC-IF can use to update the
counters it manages. For example a CA-PMC Core module might generate a number of instruc-
tions committed each cycle from the signals on the Core Scoreboard. The CA-PMC input signals
and the signal to event translation logic are highly dependent on the module the CA-PMC is as-
sociated with and their description is out of the scope for this document. Figure 3.13 presents a
high-level view of the CA-PMC architecture.

The CA-PMC is to be included/instantiated in the module it is providing counters for, like depicted
in Figure 3.13, or as an external module connected to the module it is providing counters for, like
depicted in Figure 3.14. The second is the approach followed in the ISOLDE project, but both are
possible. To simplify our diagrams we typically represent the CA-PMC module as a submodule of
the module its is providing counters for, as show in Figure 3.12.

Finally, as shown in Figures 3.13 and 3.14 the CA-PMC module routes the interrupt signal and
the AXI Slave provided by the CA-PMC-IF instance, that respectively are forwarded typically to an
interrupt controller and to an AXI bus.
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Figure 3.13: CA-PMC module architecture and example of instantiation in module
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Figure 3.14: Alternative CA-PMC module instantiation

3.1.6.5 Interfaces

As described in Section 3.1.6.4, the CA-PMC module provides three interfaces:

1. Signals from the monitored module (input): Signals from the monitored module allowing
the generation of events that can be counted by the CA-PMC module (through the support
provided by the CA-PMC-IF module). The signals also contain the context information gen-
erated by the CA-CORE module and forwarded by intermediate modules (e.g. bus, caches,
etc.).

2. AXI Slave interface (input/output): An addressable slave interface, i.e. will only respond to
requests, to control the performance monitoring counters operation (e.g. set the event the
counter is tracking, enable a counter, enable a counter to generate overflow, etc.) and read-
/write the counters. The actual implementation of the AXI Slave interface and its memory
mapping is done by the CA-PMC-IF module instantiated by the CA-PMC and the later simply
forwards the interface. For a complete description of the interface and its memory map refer
to the CA-PMC-IF description in Section 3.2.1.

3. Interrupt (output): An interrupt signaling that one of the counters has overflowed. This
signal is actually generated by the CA-PMC-IF module instantiated by the CA-PMC and
simply forwarded by the later. For a more complete description of the conditions on which
an interrupt can be generated refer to the CA-PMC-IF description in Section 3.2.1.
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3.1.6.6 ISA specialization

The CA-PMC module has no impact on the ISA.

3.1.6.7 Evaluation prototype

A CA-PMC prototype of the CVA6 Core has been implemented. We refer to this IP as the CVA6
CA-PMC. It provides a parameterizable number of counters (from 1 to 256) and all the events
available in the CVA6 version 5.01 can be mapped to any of the counters. The CVA6 CA-PMC
module follows the design of the CVA6 core that integrates the first-level cache into the core.

The CVA6 CA-PMC module has been instantiated in two different designs. The first design in-
stantiates the CVA6 CA-PMC alongside a single-core design of the CV32A6, as depicted in Fig-
ure 3.15. This design allows to validate the functionalities of the counters provided by the CVA6
CA-PMC module. Currently all the fonctionalites have been validated without the context aware-
ness capability, as the context information generation is still under test. This design is particularly
used to:

• initial platform to debug the design of the CVA6 CA-PMC and its integration in a SoC;
• validate the address mapping and access to the CVA6 CA-PMC module from the CVA6 core

through the system bus;
• validate the counters counting operation by comparing them to regular performance moni-

toring counters provided by the regular CVA6 core;
• and validate the counter overflow interrupts.

This single-core design has been mostly validated in simulations under Verilator. It has also been
succesfully sinthesized for the Genesys 2 board (Xilinx Kintex-7 FPGA).

CVA6
with L1 Cache Subsystem

AXI BUS

Memory

CA-BUS

CSR
regfile

LD/ST
unit

CA-PMCCA-PMC-IF

AXI
adapter

Figure 3.15: Single-core prototype of the Context Aware Monitoring framework

The second design is a multi-core design with two, four or eight CV32A6 cores, each with its own
level 1 cache, connected to the system bus. Each core has its own CA-PMC Core module, i.e. the
design contains as many CA-PMC Core modules as cores, and the CA-PMC core modules are
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connected to the system bus allowing one core to access the performance counters of the other
core through memory requests (i.e. load and store instructions). This design as the first one does
not have a level 2 cache. Figure 3.16 shows an instantiation of the design with two cores, i.e.
dual-core. This design allows to validate the access of the counters from anywhere in the system
(as long as the core and the accessed CA-PMC share the same address space). Various tests
have succesfully been performed, but as in the first design the context awareness has not been
tested and in this case neither the counter overflow interrupts. This design has only been tested
using simulation, the synthetizable model being developed at the time of this writing.

Core 1 CVA6
with L1 Cache Subsystem

AXI BUS

Core 2 CVA6
with L1 Cache Subsystem

Memory

CA-BUS

CSR
regfile

LD/ST
unit

CA-PMCCA-PMC-IF

AXI
adapter

CSR
regfile

LD/ST
unit

CA-PMC CA-PMC-IF

AXI
adapter

Figure 3.16: Dual-core prototype of the Context Aware Monitoring framework

Listing 3.1 provides the output of one of the bare metal tests on the dual-core design shown in
Figure 3.16. For this test each CA-PMC Core module has 8 counters available. In the test the
two cores synchronize (not showed in the listing) before starting the CA-PMC modules test. After
synchronization the two cores start to execute the same program simultaneously:

• First each core checks the capabilities (see Section 3.2.1) of the CA-PMC Core module
attached to it. We can observe that each core detects that their CA-PMC Core module has
8 counters available, line 6 in Listing 3.1 for core 1 and line 5 for core 0.

• Then each core initializes each counter to predetermined events (e.g. counter 0 is set to
event 0 that corresponds to the cycle event, counter 1 to event 1 that corresponds to the
instruction executed event, etc.), lines 14 and 13 in the listing for core 0 and 1 respectively.

• Then each core enables all the counters in the CA-PMC Core modules, lines 16 and 15 in
the listing for core 0 and 1 respectively. At this moment the counters will start to count the
events each one is associated with.

• Then each core start to perform some matrix computations. The purpose of these compu-
tations is to generate events and make the counters count.

• After finishing the matrix computations each core disables the counters of their associated
CA-PMC Core modules, lines 20 and 31 in the listing for core 0 and 1 respectively. At
this point the CA-PMC Core counters will stop counting when their associated events when
those occur, i.e. they retain the value they had before the being disabled.
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• Then each core dumps the values and associated events of each counter in their associated
CA-PMC Core module, lines 21, 22, and 24-29 for core 0 in the listing and lines 32-39 for
core 1. After dumping the counters each core displays the Goodbye message, lines 30 and
40 in the listing for core 0 and core 1 respectively.

• After displaying the Goodbye message each core checks if the other one has finished, i.e.
already displayed the Goodbye message. If the other core has finished the core simply
enters and infinite loop without doing anything. In Listing 3.1 we can observe that is core
0 that finishes first as there is no more output from that core after displaying the Goodbye
message. The core that finishes the latest, core 1 in the listing, then dumps all counters
values and associated events for each of the CA-PMC Core modules in the design, lines 41
to 56 in the listing. We can observe that the information displayed matches the information
previously displayed by each of the cores.

The same bare metal test and others were successfully run on simulations of the two, four and
eight cores instantiations of the multi-core design.
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Listing 3.1: Output of baremetal test in dual-core design
1 [ C 1 ] Checking mapped PMC support
2 [ C 0 ] Checking mapped PMC support
3 [ C 1 ] capabilities.version = 1
4 [ C 0 ] capabilities.version = 1
5 [ C 1 ] capabilities.ncounters = 8
6 [ C 0 ] capabilities.ncounters = 8
7 [ C 1 ] capabilities.nevents = 24
8 [ C 0 ] capabilities.nevents = 24
9 [ C 1 ] capabilities.custom = 0

10 [ C 0 ] capabilities.custom = 0
11 [ C 1 ] capabilities.ctxlen = 8
12 [ C 0 ] capabilities.ctxlen = 8
13 [ C 1 ] Setting counters
14 [ C 0 ] Setting counters
15 [ C 1 ] Enabling counters
16 [ C 0 ] Enabling counters
17 [ C 1 ] Filling matrix
18 [ C 0 ] Filling matrix
19 [ C 0 ] Reducing matrix
20 [ C 0 ] Disabling counters
21 [ C 0 ] Counter 0 event 0 = 0x000000000000cf98
22 [ C 0 ] Counter 1 event 1 = 0x0000000000008fbe
23 [ C 1 ] Reducing matrix
24 [ C 0 ] Counter 2 event 6 = 0x000000000000120f
25 [ C 0 ] Counter 3 event 7 = 0x0000000000001183
26 [ C 0 ] Counter 4 event 2 = 0x000000000000003f
27 [ C 0 ] Counter 5 event 3 = 0x0000000000000409
28 [ C 0 ] Counter 6 event 10 = 0x00000000000024a7
29 [ C 0 ] Counter 7 event 15 = 0x0000000000000020
30 [ C 0 ] Goodbye
31 [ C 1 ] Disabling counters
32 [ C 1 ] Counter 0 event 0 = 0x000000000001361f
33 [ C 1 ] Counter 1 event 1 = 0x0000000000009196
34 [ C 1 ] Counter 2 event 6 = 0x0000000000001222
35 [ C 1 ] Counter 3 event 7 = 0x00000000000011bb
36 [ C 1 ] Counter 4 event 2 = 0x000000000000003d
37 [ C 1 ] Counter 5 event 3 = 0x000000000000040a
38 [ C 1 ] Counter 6 event 10 = 0x0000000000002516
39 [ C 1 ] Counter 7 event 15 = 0x0000000000000032
40 [ C 1 ] Goodbye
41 [ C 1 ] Core 0 counter 0 event 0 = 0x000000000000cf98
42 [ C 1 ] Core 0 counter 1 event 1 = 0x0000000000008fbe
43 [ C 1 ] Core 0 counter 2 event 6 = 0x000000000000120f
44 [ C 1 ] Core 0 counter 3 event 7 = 0x0000000000001183
45 [ C 1 ] Core 0 counter 4 event 2 = 0x000000000000003f
46 [ C 1 ] Core 0 counter 5 event 3 = 0x0000000000000409
47 [ C 1 ] Core 0 counter 6 event 10 = 0x00000000000024a7
48 [ C 1 ] Core 0 counter 7 event 15 = 0x0000000000000020
49 [ C 1 ] Core 1 counter 0 event 0 = 0x000000000001361f
50 [ C 1 ] Core 1 counter 1 event 1 = 0x0000000000009196
51 [ C 1 ] Core 1 counter 2 event 6 = 0x0000000000001222
52 [ C 1 ] Core 1 counter 3 event 7 = 0x00000000000011bb
53 [ C 1 ] Core 1 counter 4 event 2 = 0x000000000000003d
54 [ C 1 ] Core 1 counter 5 event 3 = 0x000000000000040a
55 [ C 1 ] Core 1 counter 6 event 10 = 0x0000000000002516
56 [ C 1 ] Core 1 counter 7 event 15 = 0x0000000000000032
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3.1.7 Memory Subsystem Support for Bytecode VMs – HM

3.1.7.1 IP Card

Basic Info

IP name Bytecode VM Memory Subsystem
License Open-source (Apache2 License)
Repository https://github.com/hm-aemy/wasm-hwstack (pending publication)

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y (CSR)
Memory mapped? N
Protocol N/A
Address Map N/A

Initiator Interface
Protocol Simplified bus, AXI Wrapper
Cached? N
IOMMU? N

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA -

Software

Compiler Requires specialized compiler? N
Compiler repository -

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? Y (cocotb verification)
(if standalone sim) SW requirements? N
Integration documented / examples? Y

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? N
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? N
Open-source simulation? Y (Verilator, Icarus)

Evaluation PPA results available? N

3.1.7.2 General Information

The memory subsystem support for bytecode VMs is a standalone HW module that serves as
a hardware-assisted stack. Software is adopted with CSR accesses to substitute memory ac-
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cesses, essentially offloading the entire stack machine handling into hardware, with the goal of
single-cycle accesses to the stack.

3.1.7.3 Purpose and Scope

While the stack of the virtual machine is stored in memory, this module virtualizes the access with
push and pop access via CSRs. The module caches the top of the stack for faster access and
asynchronously moves data between the internal cache and main memory. Besides the caching
effect, this offloads all address calculations from software.

The module is integrated with CVA6 and other cores from the same family.

3.1.7.4 Place in the System

The module is tightly integrated into the core via the CSR interface, extending the CSR map
with custom extension CSRs. As a second interface, the module has a simple bursting memory
interface that can trivially be mapped to AXI4Lite. A wrapper is available.

The configuration parameters are:

STACK_SIZE Size of the cached stack
STACK_BURST_SIZE Size of bursts, which are asynchronously fetched and stored.

3.1.7.5 Architecture

The architecture is internally organized into four components:

CSR logic serves requests for the CSRs of this module, which are split into configuration and
runtime registers. On both register types stall cycles can appear, which limits the integration
to cores that allow for multi-cycle CSR accesses.

Stack manages a local cache of the current top elements of the stack. It exposes the top of the
thread to the CSR logic and signals its fill state.

Memory logic transfers data in bursts between the local cache and main memory. In cases the
local stack cache runs empty, it refills with the next elements from memory, and in cases it
runs full stores the data to the memory.

Control logic Synchronizes between the modules, handles configuration accesses and signals
wait states.

3.1.7.6 Interfaces

Bus/AXI4Lite interface

The bus interface is a simple standard bus interface that only handles one outstanding memory
transaction at a time. It is trivially mapped to AXI4Lite and other bus protocols.

CSR interface

The CSR interface is defined the following table:
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CSR Index Field Bits Function
stackctrl TBD FILL 31..8 Current fill state (read only)

EN 0 Enabled. On transition from 1 to 0, the mod-
ule flushes the stack content to memory.

stackbase TBD ADDR XLEN-1..0 Base address of stack in memory
stackptr TBD ADDR XLEN-1..0 Current top address of stack in memory (for

context switches)
stackend TBD ADDR XLEN-1..0 End address of stack in memory
stackpush TBD DATA XLEN-1..0 Push data item to stack
stackpop TBD DATA XLEN-1..0 Pop data item from stack

Software Interface

The bytecode virtual machine interpreter (or other stack-based software) accesses the module
along the lifecycle as listed below

/ / Conf igure the c u r r e n t l y running a p p l i c a t i o n
c s r _ w r i t e ( stackbase , <base−address >) ;
c s r _ w r i t e ( s tackp t r , <base−address >) ;
c s r _ w r i t e ( stacktop , <end−address >) ;
c s r _ w r i t e ( s t a c k c t r l , 1) ;

/ / During runt ime : Push an element , example constants
c s r _ w r i t e ( stackpush , 2) ;
c s r _ w r i t e ( stackpush , 3) ;

/ / During runt ime : Pop elements , push r e s u l t , example add
p0 = csr_read ( stackpop ) ;
p1 = csr_read ( stackpop ) ;
c s r _ w r i t e ( stackpush , p0+p1 ) ;

/ / Context swi tch between two a p p l i c a t i o n s
c s r _ w r i t e ( s t a c k c t r l , 0) ;
csr_swap ( stackbase , c tx0 . stackbase , c tx1 . stackbase ) ;
csr_swap ( s tackp t r , c tx0 . s tackp t r , c tx1 . s t a c k p t r ) ;
csr_swap ( stackend , c tx0 . stackend , c tx1 . stackend ) ;
c s r _ w r i t e ( s t a c k c t r l , 1) ;
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3.1.8 Safety-Related Traffic Injector (SafeTI) – BSC

3.1.8.1 IP Card

Basic Info

IP name SafeTI
License Open-source (MIT License)

Repository https://github.com/bsc-loca/
SafeTI/tree/21678221e4bb9c9e51be7d135f0644213726fe7e

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol APB 32b
Address Map Base (0xfc085000) + 0x100

Initiator Interface
Protocol APB 32b
Cached? N
IOMMU? N

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? Y

Programmability Contains programmable cores? Y, but using its own traffic pattern descriptors
ISA -

Software

Compiler Requires specialized compiler? N
Compiler repository -

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? Y

SDK repository https://github.com/bsc-loca/SafeTI/tree/
21678221e4bb9c9e51be7d135f0644213726fe7e/sw

Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Y (Readme.md)
Standalone simulation? Y
(if standalone sim) SW requirements? QuestaSim and Xilinx Vivado 2020.2

Integration documented / examples?
https://gitlab.com/selene-riscv-platform/selene-hardware/-/
tree/ISOLDE/grlib/software/noelv/BSC_tests/
injector_tests_template

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? https://doi.org/10.1145/3703910

3.1.8.2 General Information

The SafeTI is a flexible and programmable traffic injection hardware module to enable exhaus-
tive timing verification and validation of powerful Multiprocessor System-on-Chips (MPSoCs) for
safety-critical systems. In particular, BSC’s latest version comes along with an increased num-
ber of features and an improved architecture that have been contributed as part of the work in
ISOLDE.
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3.1.8.3 Purpose and Scope

SafeTI is designed to inject programmable traffic in on-chip interconnects. SafeTI allows program-
ming arbitrary traffic patterns where multiple parameters can be configured, such as read/write
requests, data size sent/received, burst length, inter-request delays, repetitions per request, se-
quence of requests, etc.

Traffic pattern programming is devised to keep the memory footprint low to reduce the internal
storage needed and speed SafeTI programmability up. Moreover, traffic pattern descriptors have
been devised, enabling future extensions.

SafeTI is implemented as a pipelined module to enable high injection rates without unnecessary
delays between consecutive requests.

SafeTI is designed to ease its portability across different communication interfaces like AMBA
AHB, AMBA AXI and others. We provide its realization for an AMBA AHB interface.

SafeTI is integrated in an FPGA-based MPSoC from Frontgrade Gaisler AB, based on RISC-V
NOEL-V cores.

3.1.8.4 Place in the System
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Figure 3.17: SafeTI system integration

The SafeTI is an AMBA AHB and AXI-compliant module for traffic injection. It is intended to
be connected to these two types of interfaces, and it is particularly useful if those interfaces
have either multiple managers or are connected to subordinates receiving requests from multiple
managers. For instance, its best placement is as part of the interface connecting the cores and/or
accelerators with the shared caches or memory controllers, as illustrated in the schematic in
Figure3.17. This way, the predefined traffic can be injected to test a variety of timing and functional
behavior controllably. SafeTI’s programming port is compliant with the AMBA Advanced Peripheral
Bus (APB) and will be compliant with AMBA AXI in the future.
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3.1.8.5 Architecture
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Figure 3.18: SafeTI architecture block diagram

The SafeTI has a set of control registers programmed through an APB or AXI interface. Those
control registers are the ones allowing to program the descriptor buffer, which stores micropro-
grammed sequences of traffic patterns to be injected by the SafeTI into the injection interface (IB
in the Figure 3.18), namely an AXI or AHB interface.

The injection pipeline of the SafeTI works as follows: once the next descriptor is fetched (they are
fetched from the descriptor buffer analogously to instructions from memory in a computing core),
it is decoded. A descriptor pointer indicates the next descriptor to fetch. The iteration counter
in the descriptor indicates whether the next descriptor needs to be fetched next, or whether the
current descriptor needs to be used again (e.g., to inject repeated traffic). Using the information
of the decoded descriptor, the traffic injection stage generates the traffic to inject (read or write,
with a given data transaction size, whether in burst mode or not, etc.). Note that if the descriptor
is a delay descriptor, no traffic is injected until the indicated delay elapses.
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Figure 3.19: SafeTI as microprogrammed and memory-mapped module using its own descriptor
format

The SafeTI is a microprogrammed and memory-mapped module using its own descriptor format,
which we illustrate in Figure 3.19. Each descriptor type features a different word length and field
encoding to accommodate the programmable parameters required by the action to be carried out.
However, every descriptor shares the first descriptor word format specified in the figure, providing
a compatibility layer in the descriptor format for a lighter implementation. Changes to the first
descriptor word fields are considered in future descriptor type expansions. Field size and count
could be modified for new descriptor types due to being action-specific, whereas fields like irq_en,
type, and last are considered immutable, to maintain the compatibility layer.

The size field encodes the number of bytes to access for READ and WRITE descriptor types or
the number of clock cycles needed to wait for the DELAY descriptors. The count field encodes
the number of times the descriptor’s execution must repeat. Thus, the same operation is executed
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(count + 1) times. The irq_en bit allows the SafeTI to send an interruption through the APB
interface upon descriptor completion. Finally, the last bit is used to finalize the injection pattern at
a specific descriptor completion (which disables the traffic injector if QUEUE mode is disabled) or
restarts the execution from the first descriptor.

Descriptor types READ, WRITE, READ_FIX, and WRITE_FIX include a second 32-bit word used
as a starting address where to perform the access operation. Should an invalid address be pro-
grammed, the traffic injector behavior depends on the network response to complete the access
with an error (e.g., lack of permission, non-existing, etc.) and resumes traffic injection.

3.1.8.6 Interfaces

AMBA AHB/AXI interface: The AHB or AXI interface is a manager interface used to inject traffic.
It is fully compliant with the specification of the corresponding protocol. Note that, in general, a
SafeTI instance supports only one of those interfaces and injects traffic accordingly.
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Figure 3.20: SafeTI Hardware Interface

The AMBA APB subordinate interface is used to program the control registers of the SafeTI, and
to store descriptors in the internal descriptor buffer. An address space of 256 bytes is reserved
for the APB interface, with such addresses being set at integration time.

The APB interface only supports single 32-bit accesses for setting the configuration register
(0x00), shown in Figure 3.20, and descriptor word input feed register (0xFC) for programming
the injection pattern.

The SafeTI programming process consists of word-by-word writing each descriptor, in execution
order. Descriptors to be written are obtained through the APB descriptor feed register stored in
the descriptor buffer, which is part of the FETCH stage. Once the desired injection patterns have
been programmed, the injector may be configured and then initialized.

The reset_sw bit is asserted when a new injection pattern needs to be loaded. The current
pattern is wiped out, and all circuits are reset except those related to transactions in process. This
is necessary to allow for the correct termination of ongoing transactions. On the other hand, the
hardware reset puts all circuits in a default state without exceptions. Yet, note that the hardware
reset is a SafeTI signal not visible to the software layers.

SafeTI module features several interruption flags that are propagated through the APB interface.
These include interruptions raised due to a network error, generated when the injection network
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answers with an error, due to an internal error caused by an unsupported encoding, or due to
injection pattern completion. Furthermore, descriptor completion can also trigger an interruption,
programmed on the first descriptor word as explained before.

SafeTI also features an automatically disabling mechanism, which triggers an interruption by as-
serting the freeze_irq flag to notify that it has been disabled. SafeTI is disabled by means of a
hardware breakpoint of the traffic pattern execution. The conditions that can trigger the inter-
ruption are configured by asserting the irq_err_net, irq_err_core and irq_prog_compl for network
error, SafeTI error, or injection pattern completion, respectively.

SafeTI can be set in QUEUE mode by asserting the queue_mode flag so that the injection pattern
execution loops to the first descriptor after completion. The freeze_irq flag overrides the QUEUE
mode, meaning that under the right conditions, the traffic injector is disabled, even if SafeTI is
configured to work in QUEUE mode.

Software Interface

The control register of the SafeTI, as well as the descriptor word input feed register used for
SafeTI configuration, must be modified only by software components with appropriate privileges.
To realize this, the SafeTI registers are mapped in specific physical addresses upon integration in
the platform, and the hypervisor (FENTISS’ XtratuM Next Generation, also known as XNG, in the
particular case of the SafeTI integration in ISOLDE) is in charge of managing privileges to allow
only specific partitions to update and reading of the SafeTI’s registers.

The preferred configuration consists of allowing only a single partition to modify the SafeTI’s regis-
ters, whereas the other partitions cannot access them. XNG guarantees this behavior, leveraging
the MMU existing in the NOEL-V cores. This MMU also implements the RISC-V ISA hypervi-
sor extension. Overall, the XtratuM hypervisor provides memory space isolation for the SafeTI’s
registers, hence achieving freedom from interference, in line with safety standards guidelines for
items with integrity requirements.

For allowing a partition of the XNG hypervisor to manage the SafeTI device from a high-level
perspective, a driver at hypervisor level is being developed and integrated by FENTISS, which
exposes to the partitions a new set of hypercalls. Hypercalls are services or system calls pro-
vided by the hypervisor to the partitions, and requesting them causes a privilege escalation from
the partition running at user mode to the core running at system mode. These new hypercalls
implemented, specified in Table 3.6 allow managing the SafeTI device by a partition which has
SafeTI access permissions.

In order to define whether or not a partition has access to the SafeTI device, a new attribute in
the Xtratum Configuration Files (XCF) has been added. If a partition’s XCF includes the “safeti”’
attribute, that partition is granted with permissions to access SafeTI registers and use the provided
hypercalls without restriction. Otherwise, if the attribute is not present, any attempt to the partition
to invoke a SafeTI hypercall will result in an error code indicating an invalid configuration.

Finally, in order to receive from a partition the interrupts generated by the SafeTI device, the
XCF of the partition needs to be configured to delegate them. It is also important to note that
the partition should allow the interrupts reception, unmask the desired interrupts and install the
desired handlers to be triggered when an interrupt is received, which can be done through other
hypercalls implemented within XNG.
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Hypercall Description
retCode XSafeTiProgramDescriptor(
desc_type, size, attack_addr, count,
last, int_en)

Configures and writes an individual descriptor
into the FIFO queue by writing to the descrip-
tor memory feed register.

retCode XSafeTiConfig( en,
queue_en, int_prog_compl, int_error,
int_net_error, freeze_int)

Programs the configuration register of the
SafeTI injector.

retCode XSafeTiReset() Resets the injector and clears current config-
uration.

retCode XSafeTiGetCounterVal(
counter, *value)

Reads a SafeTI counter (interrupts or ac-
cesses).

retCode XSafeTiCountersReset() Resets the SafeTI counters.
retCode XSafeTiIsRunning( *value) Returns whether or not the SafeTI module is

running.

Table 3.6: Hypercall table implemented within XNG for SafeTI device support

3.1.8.7 Evaluation Prototype

To evaluate the SafeTI, it has been integrated in the SELENE SoC and implemented on a Xilinx
FPGA operating at 100MHz as seen in Figure 3.17. One instance is of the SafeTI is integrated
in the AMBA AHB Bus, SafeTI_AHB, while the other instance is connected to the AMB AXI Bus,
SafeTI_AXI. To evaluate their correct operation, different injection patterns will be set using the
AXI descriptors. The SafeSUs attached to the same bus will report whether the traffic injected is
correct as expected by the descriptors employed or not.
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3.1.9 Safety and Security Control Unit – IFX

3.1.9.1 IP Card

Basic Info

IP name Safety and Security Control Unit
License Open Source; Details to be defined
Repository At the moment local. Will be released later publicly

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Custom CSRs required
Memory mapped? N
Protocol Initially AHB; Current implementation CSR
Address Map Custom to Platform

Initiator Interface
Protocol CSR instructions
Cached? N
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? RTL from a parametrized generator

Programmability Contains programmable cores? N
ISA RV32I + Custom CSRs

Software

Compiler Requires specialized compiler? N
Compiler repository N/A

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Planned; Format to be defined
Standalone simulation? Y
(if standalone sim) SW requirements? N
Integration documented / examples? Will be released together with the IP

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Planned
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (Xcelium)
Open-source simulation? Planned

Evaluation PPA results available? N

3.1.9.2 General Information

The Safety and Security Control Unit (SSCU) serves as a centralized control unit. Its role is to
collect all error signals coming from various sources on the chip, analyze and process them, and
in turn alarm the system when a critical state is reached.
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This implementation of the SSCU is architected to be tightly integrated with a RISC-V CPU core,
enabling a highly efficient configuration for systems with a single processing core. In such sys-
tems, where the RISC-V core serves as the sole initiator for accessing the SSCU, it becomes
unnecessary to connect the SSCU to the shared bus interconnect. Unlike multi-core designs
or systems with multiple initiators, there is no requirement for other components to access the
SSCU’s registers. Consequently, leveraging RISC-V CSRs as the primary interface for the SSCU
becomes a more optimal solution.

By decoupling the SSCU from the bus interconnect, the overall complexity of the bus infrastruc-
ture is reduced. Notably, this eliminates the need for address decoding logic specific to the SSCU,
thereby streamlining the datapath and reducing the critical timing path associated with bus oper-
ations. Furthermore, accessing the SSCU via CSR instructions bypasses the latency and con-
tention typically associated with shared bus transactions, offering significantly lower access times.
The RISC-V CSR mechanism inherently allows for efficient read and write operations, as they are
tightly coupled to the instruction pipeline of the CPU core.

Additionally, the tight physical coupling between the SSCU and the RISC-V core introduces fur-
ther architectural advantages. By situating the SSCU in close proximity to the processor core,
wire lengths are minimized, which in turn reduces signal propagation delays and mitigates power
dissipation associated with long interconnects. This proximity optimizes both timing and energy
efficiency, contributing to improved system performance.

Figure 3.21 provides an example of one possible integration of the SSCU in a RISC-V core. The
error signals that are external to the core perspective would be configured as an asynchronous
interrupts, meanwhile the error signals internal to the core would be configured as a custom
synchronous exception to enable the quickest way to react.

Figure 3.21: Example of SSCU integration in a 5-stage RISCV core.

3.1.9.3 Purpose and Scope

The SSCU is designed as a universal module capable of integration into a wide range of safety-
critical platforms and applications. Its primary role is to manage the handling of Single Event faults,
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ensuring robust system operation in environments prone to transient errors caused by radiation
or high-energy particles. However, its application is not limited only to this, making it a versatile
solution suitable for broader fault-handling requirements in safety-critical systems.

The SSCU is focused exclusively on fault handling. It does not directly participate in the detection
or correction of such faults. These tasks—detection and correction—are delegated to the safety
modules implemented within the chip itself. This design decision ensures that the SSCU remains
flexible and agnostic to specific fault models, enabling seamless integration into diverse platforms
and applications. The SSCU operates at a higher conceptual level, dealing only with error man-
agement, regardless of the underlying mechanisms used for fault detection and correction.

We refer to these hardening mechanisms simply as safety nodes. Each node must have the
following attributes:

• identifier : unique identifier for each node within the system.
• function : specific original functionality performed by the node such as error correction or

error detection.
• error detection/correction mechanisms : the implementation-specific method used by the

node to detect or correct errors.
• trap specifier : additional specifier indicates which trap handler of the CPU is responsible to

handle the particular error generated from this node.

Different safety nodes have varying levels of severity and importance regarding system functional
safety. To address this, nodes are categorized into groups based on the severity and handling
requirements of the errors they detect. These groups require distinct logical management. By
centralizing all error signals and processing them in group units, the SSCU reduces the number
of individual error notifications by generating a single alarm for each group. Each alarm can
be configured to trigger internal actions or notify external systems of faults handling via a fault
signaling protocol.

Currently, the supported errors can be categorized based on their status:

• uncorrected errors : errors detected but not corrected by the node, which will propagate in
the next cycle and possibly contaminate the hardware state.

• corrected errors : errors detected and corrected by the node, preventing them from affecting
subsequent cycles

Figure 3.22 shows an example design of a node with error detection and correction capabilities.
This node has the ability to correct errors using spatial redundancy. It features an Encoder,
Register Bank, and Decoder.

The Encoder processes input data Data_in and an enable signal (Enable), then forwards it to
the Register Bank, which includes three protected registers (Reg0, Reg1, Reg2) implementing
TMR. The Decoder uses a voter mechanism to correct errors and outputs the corrected data
Data_corrected out. Additionally, a non-equivalence comparator Decoder generates an alarm_out
signal if discrepancies are detected. This alarm_out signal is wired toward the SSCU and when-
ever an alarm is detected, specific processing to ensure robust error management of the error is
performed.

The described logic is not the only type of logic used for error detection or correction, it is just
shown for illustration. Any other mechanism used also works as long as it is able to alarm the
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Figure 3.22: Node with Error Correction (TMR).

SSCU accordingly.

3.1.9.4 Refined architecture description

Error Groups

As mentioned above, incoming errors towards the SSCU are categorized into groups. Each group
has one dedicated alarm. However, the logic that triggers this alarm varies.

Figure 3.23: SSCU Consisting of Multiple Error Groups.

Figure 3.23 illustrates the concept of error groups within the SSCU. Nodes are organized into

D3.2 ISOLDE - public 29.04.2025



Deliverable D3.2 ISOLDE Page 59

different groups based on the severity and/or type of errors they generate. Each group is pro-
cessed separately to ensure locally prioritized error handling. All errors are then routed to their
respective group processing units. Group 1 Processing handles a subset of errors with specific
characteristics, related to certain traps. This group’s output generates alarm 1, which signals
an error condition based on the aggregated errors from nodes within this group. Group 2 Pro-
cessing manages another subset of errors, possibly with different severity or different handling
requirements. The output of this group generates alarm 2, similarly indicating an error condition
for its respective nodes. The SSCU aggregates these error signals and interfaces with software,
allowing for real-time monitoring and control. The software interface can read and write CSRs
corresponding to each error group.

Implementing an Error Group

The nodes within a group are processed in batches, and a so-called batch unit is designed to
support a subset of the nodes in the group. This error batch process unit outputs node ID and
also the 2-bit of error type (uncorrected, corrected overflow, or uncorrected overflow). Each batch
unit produces one batch alarm that feeds into the next stage where a group alarm is generated
based on batch alarms. In addition, batch ID is computed to contain information on which batch
has fired alarms.

Figure 3.24: Separation of Group in Batches.

Error batch process unit is the module where most of the logic to handle errors is located and also
the module that interacts with the software. This unit provides 3 key features: error prioritization,
alarm flood prevention and diagnostic ability which are in turn explained below.

First, it is crucial to implement a mechanism that prioritizes different types of errors. This ensures
that critical errors are addressed promptly while less severe issues are managed appropriately.
Additionally, the unit must prevent alarm flooding by avoiding the continuous sending of alarms
for the same cause, which can overwhelm the system and obscure significant new errors. Fur-
thermore, the error batch processing unit needs to have mechanisms for enabling and disabling
error reporting based on the system’s operational requirements. This flexibility is vital for mainte-
nance and testing purposes. Another requirement is the storage of error information for software
diagnostics.

The overview of the error batch processing unit is depicted in Figure 3.25. Alarm flood prevention
is achieved through a report control mechanism and an error counter and compare mechanism,
which reduces the frequency of servicing the same error. Alarms are prioritized using a priority
encoder, and an alarm encoding is produced and stored in the control status register for diagnostic
purposes.
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Figure 3.25: High-Level Schematic of Error Batch Process Unit.

There are three main categories of alarms that the SSCU can generate:

• uncorrected error alarm : This alarm is triggered when an uncorrected error is detected.
Uncorrected errors indicate serious faults that cannot be automatically resolved by the local
safety mechanism, requiring system measures such as triggering a CPU exception to step
in.

• uncorrected overflow alarm : This alarm is activated when the counter for uncorrected er-
rors overflows. It occurs when the number of uncorrected errors exceeds the configured
threshold, indicating that the system itself is experiencing catastrophic issues where exter-
nal action needs to be taken.

• corrected overflow alarm : This alarm is triggered when the counter for corrected errors
overflows. The purpose of this alarm is to notify that the system is experiencing a high rate
of correctable errors, which, while not immediately critical, may indicate underlying issues
that could escalate if not addressed.

Error Diagnosis

In the presence of an error, whether corrected or uncorrected, the software can diagnose the issue
by leveraging the hierarchical structure of the SSCU. The diagnosis process begins with the fact
that each error group will trigger a different trap. Each error group corresponds to a specific set of
nodes categorized based on the severity and type of errors they generate and by pinpointing the
exact error group, the system narrows down the possible sources of the error.

Once the error group is identified, the next step is to determine the specific batch group within that
error group that has triggered the alarm. Each error group consists of multiple batch units, and
the alarm generated by the error group indicates which batch is responsible. The software reads
the CSR of the batch group to further diagnose the issue. The CSR contains detailed information
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about the error signals and their origins, including the node error report control bits for each node
within the batch. If a node error report control bit is disabled, it indicates that the corresponding
node is the source of the alarm. The software can then use the alarm encoding stored in the CSR
to identify the type of error—whether it was a corrected error, an uncorrected error, or an overflow
condition.

3.1.9.5 Interfaces

As shown in Figure 3.21, the SSCU needs to interact with the Exception Unit of the RISCV core.
The implementations of the Exception Unit might vary from core to core, but the idea is to configure
different alarms that SSCU generates as custom traps. Once these alarms are generated, the
Exception Unit will be responsible to force the core into executing the relevant trap handling routine
which in turn will diagnose the SSCU to detect the error and then take further actions.

Relating to the SW interface, the Core needs only to perform the following actions in relation to
the SSCU:

• Error Controls : which allows the system to enable or disable error reporting based on spe-
cific conditions or thresholds. It prevents the system from being overwhelmed by continuous
alarms from repetitive or non-critical errors.

• Error Diagnosis : which allows the system to identify the root cause of the error and evaluate
its criticality so it can take appropriate measures.

To support these actions, the CPU where the SSCU is integrated, must support custom CSRs
that have a specific structure. The addresses of the CSRs can vary from platform to platform,
based on the availability of the addresses and the number of groups implemented in the SSCU.
However, they must be within the ranges reserved for Custom read/write Machine-Level CSRs,
as defined in the official RISCV specification.

Each group has one CSR that is used to configure this group. The two Least Significant bits of
this CSR provide information on the alarm type. All alarm types can be asserted simultaneously.
Since uncorrected errors have the potential to propagate and contaminate the circuit state, they
need to be given higher priority. Therefore, alarm encoding is introduced to indicate the type of
error that needs to be processed. The exact encoding is shown in Table 5.2.

Uncorrected Error Uncorrected Overflow Corrected Overflow Encoding
1 1 X 11
1 0 X 10
0 0 1 01
0 0 0 00

Table 3.7: Alarm Encoding Table.

The rest of the CSR is composed of single bitfields, with each bitfield dedicated to one error node.
When cleared, the bitfield disables the error reporting for that specific error node. When SSCU
generates an alarm, it will automatically clear the bitfield of the node responsible for the alarm.
This way, the SW can simply detect the node that raised the error by simply identifying the cleared
bitfield in the CSR. This structuring, limits the number of nodes one group can have to 30.
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3.1.9.6 ISA specialization

This unit does not necessitate the introduction of a specialized ISA extension for its operation.
Instead, it integrates seamlessly with the existing RISC-V architecture through the addition of a
minimal set of CSRs. These custom CSRs are allocated specific addresses within the designated
range reserved for User-Defined CSRs, as per the RISC-V specification.

3.1.9.7 Evaluation prototype

The Safety Unit will be integrated into a basic RV32IMC RISC-V core, which will be augmented
with specific hardening mechanisms applied to selected registers. These hardening mechanisms
are designed to improve system fault tolerance by detecting and mitigating potential errors [12].
Furthermore, the core will include a fault injection mechanism, which introduces faults into the
hardened registers at randomized intervals. When faults occur, the hardening mechanisms will
detect the errors and trigger a signal to the Safety Unit. Upon receiving this signal, the Safety
Unit will initiate a controlled response by forcing the core to execute specific trap handlers. These
trap handlers are responsible for executing predefined recovery actions based on the type of fault
detected. This entire flow will be simulated and checks will be performed on runtime to evaluate
the correct functioning of the Safety Unit.

To further evaluate the system, the design will also be implemented on a basic FPGA platform
for hardware-based testing [18]. Fault injection in the FPGA prototype can be manually triggered
via external inputs, such as push buttons, allowing for deterministic testing of fault scenarios.
The system’s response to these faults will be visualized using LED indicators, providing a clear
representation of the fault detection and recovery processes in real time.
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3.1.10 Safety Island - Interface Definition – UzL
UzL has moved the effort to the development and analysis of Floating-Point Unit in T3.2, as
reported in D3.1.
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3.1.11 Root-of-Trust Unit (RoT) – UNIBO

3.1.11.1 IP Card

Basic Info

IP name Root-of-Trust (RoT)
License Open-source (SolderPad Hardware License v0.51)
Repository https://github.com/pulp-platform/opentitan/tree/mc/astral

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? N
Protocol SCMI
Address Map N.A.

Initiator Interface
Protocol AXI4
Cached? N
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. cores? N (1)
Parameteric config? Y

Programmability Contains programmable cores? Y
ISA RISC-V (CV32E)

Software

Compiler Requires specialized compiler? N

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? Y
SDK repository sw subfolder of main repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Bender.yml
Standalone simulation? Y
(if standalone sim) SW requirements? Bazel + Python + QuestaSim
Integration documented / examples? Example in tree/lg/isolde

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? N

3.1.11.2 General Information

Silicon Root-of-Trust (RoT) units represent the state-of-the-art in terms of trusted computing and
system integrity, as they establish an isolated silicon region with security features for data and
code protection. It includes a secure microcontroller, on-board private memory, cryptographic
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hardware accelerators, and communication I/O interfaces. It is based on lowRISC’s OpenTitan
Earl Grey architecture, which is refactored and extended to turn it into a silicon-secure element
easily integrable within larger designs.

3.1.11.3 Purpose and Scope

The Root-of-Trust provided by UNIBO within ISOLDE is based on lowRISC’s OpenTitan, the first
open-source RISC-V based RoT design, protecting sensitive data and systems against hard-
ware attacks, tampering, and counterfeiting. It includes acceleration units for the Secure Hash
Algorithm (SHA) enabling cryptographic hashing (SHA-256 and SHA-3), message authentication
(Hash-based Message Authentication Code - HMAC, KECCAK Message Authentication Code -
KMAC) and symmetric encryption (Advanced Encryption Standard - AES). It enables a multi-stage
secure boot process by ensuring each component is authenticated by its predecessor, leverag-
ing hardware features and cryptographic checks to protect against unauthorized modifications or
executions. UNIBO’s RoT is meant to be a ready-to-integrate silicon IP able to act as a RoT.

3.1.11.4 Refined architecture description

TLUL Interconnect
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JTAG

RV32

PLIC

TLUL <> AXI

to
Host Domain

SCMI
Mailbox

from
Host Domain

OTP

SRAM 

BootROM

Secure
Storage
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Crypto
Accelerators

KEY

Root of Trust

Figure 3.26: Root-of-Trust architecture.

The architecture of the Root-of-Trust (RoT) unit is depicted in Figure 3.26. It is centered around
a 32-bit RISC-V core, specifically designed to support embedded and power-efficient applica-
tions, with an emphasis on minimal area usage. At the system level, interconnection is facilitated
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through the TileLink Uncached Lightweight (TLUL) protocol, ensuring streamlined and secure
communication between internal components.

To enhance cryptographic performance, RoT unit incorporates dedicated hardware accelerators
(Crypto Accelerators) capable of executing essential cryptographic algorithms. These include
AES, SHA-256, SHA-3, HMAC, and KMAC, which are fundamental to the silicon Root-of-Trust’s
security features. In addition, the OpenTitan Big Number (OTBN) accelerator provides hardware
support for asymmetric encryption algorithms that underpin key exchange protocols and digital
signature schemes.

The memory subsystem (Secure Storage) of RoT comprises a scratchpad SRAM and an embed-
ded ROM, each managed by dedicated controllers to optimize performance and reliability. Critical
cryptographic and scrambling keys are generated by specialized hardware accelerators and se-
curely stored within a tamper-proof one-time-programmable (OTP) memory region. This secure
memory pairs with the key manager, which governs the handling of hardware identities and root
keys, while safeguarding sensitive assets against potential software-based threats.

To enable the application domain to request specific services from the Root-of-Trust (RoT)—such
as Trusted Execution Environment (TEE) primitives or cryptographic operations—a secure com-
munication channel has been established between the host and the unit. This channel avoids
exposing any direct target port that could be driven by the host, thereby maintaining the integrity
of the RoT boundary.

The communication mechanism is implemented using a shared mailbox, which adheres to the
ARM System Control and Management Interface (SCMI) standard—a protocol widely adopted in
heterogeneous architectures. Interactions between the primary processor and the secure mod-
ule are restricted to message-based exchanges, conducted through an interrupt-driven mailbox
system. In accordance with the SCMI specification, this mailbox provides two dedicated inter-
rupt lines, each connected to the Platform Level Interrupt Controllers (PLICs) of the application
processor and RoT, respectively. Notably, the external interrupt generated via this mechanism
remains the sole pathway through which the host can directly interact with OpenTitan, ensuring
strict control over the communication interface and preserving the security guarantees of the RoT.

Finally, it includes a peripheral subsystem that enables external communication through standard
interfaces such as SPI and JTAG, thereby facilitating integration into a wide range of embedded
environments.

3.1.11.5 Interfaces

To enable integration of the Root-of-Trust (RoT) unit into broader SoC architectures, an initiator
port from OpenTitan’s TLUL interconnect is exposed and connected via a dedicated TLUL-to-AXI4
bridge, ensuring compatibility with host platforms using the AXI4 protocol.

This setup allows OpenTitan to access the host’s memory map, which is essential for deliver-
ing TEE primitives and performing real-time integrity checks. The initiator port connects directly
to the SoC’s main interconnect, granting the RoT full system visibility while preserving security
boundaries.

To safeguard sensitive information within secure subsystems and prevent unauthorized host-core
modifications, OpenTitan is deliberately integrated without exposing a target port access to the

D3.2 ISOLDE - public 29.04.2025



Deliverable D3.2 ISOLDE Page 67

host. Consequently, interaction from the host to OpenTitan is strictly limited to external interrupts
through mailboxes, ensuring rigorous control of the communication interface and upholding robust
security guarantees inherent to the RoT.

Finally, the RoT is architecturally designed to interface with the external environment via standard
off-chip communication peripherals, such as SPI and JTAG interfaces, thereby ensuring compati-
bility and facilitating external interaction and debugging capabilities.

3.1.11.6 ISA specialization

The Root-of-Trust unit has no impact on the ISA.

3.1.11.7 Evaluation prototype

We implemented RoT unit in synthesizable SystemVerilog HDL. We targeted GlobalFoundries
GF12LP+ 12nm technology to evaluate the RoT in terms of area and performance, using Syn-
opsys Design Compiler for synthesis and Cadence Innovus for place-and-route with a frequency
target of 300 MHz. The RoT occupies 0.63mm2 of silicon, of which the Secure Storage subsystem
is 58%, the Crypto Accelerators cores are 22%, the RISC-V core is 6%, and the peripherals are
5%.

The design has been evaluated also with an FPGA implementation targeting the AMD Xilinx
UltraScale+ VCU118 board with a 20 MHz target frequency, using AMD Xilinx Vivado 2020.1.
The RoT occupies approximately 250,000 lookup tables (LUTs), 147,000 flip-flops (FFs), 40 36kb
blocks of block RAM (BRAM) and 16 unit of UltraRAM (URAM), corresponding to 21%, 6%, 2%,
and 2% of the board’s available resources, respectively.
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3.1.12 High-Performance Cache Analysis – SYSGO

3.1.12.1 IP Card

We include an IP card, although in this case the IP was developed by CEA in TRISTAN, we are
just using the IP as a demonstrator; here we have answered the questions to the best of our
knowledge.

Basic Info

IP name CV-Hpdcache
License Open-source (Solderpad Hardware License (version 2.1))
Repository https://github.com/openhwgroup/cv-hpdcache

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? Y
Protocol N
Address Map Y

Initiator Interface
Protocol Cache-Requesters Interface (CRI)
Cached? Y
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. cores? Y
Parameteric config? Y

Programmability Contains programmable cores? N
ISA RISC-V

Software

Compiler Requires specialized compiler? N

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Bender.yml
Standalone simulation? Y
(if standalone sim) SW requirements? Verilator
Integration documented / examples? Integration Examples of the HPDCache

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? N
Open-source simulation? Y

Evaluation PPA results available? N
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3.1.12.2 General Information

We analyze the high-performance cache provided by CEA in the TRISTAN project for the ISOLDE
demonstrator. The output will be a short analysis that compares the CEA cache with the default
cache. We have successfully generated the bitstream for CVA6 with HPC enabled using Vivado,
as shown in Figure 3.28. We are currently working on the software setup. We have not done the
analysis yet; hence the other content of this section is the same as in D3.1.

3.1.12.3 Purpose and Scope

Advance CVA6 ecosystem by showing the usability of advanced caches. Our general focus is on
safety and security, and correct use of caching is an important part, e.g. for information flow and
interference control in multicore systems. Hence, we are analyzing the available caches for CVA6,
and possibly to shape future implementation of cache partitioning.

3.1.12.4 Place in the System

Caches are between CPU and memory and serve to speed up memory access. We expect this
to be relevant in an application setting.

3.1.12.5 Block Diagram

Figure 3.27: High-performance cache block diagram [11]

The HDPcache is shown in Figure 3.27. The HDPcache has a number of request ports, which
are managed by an arbiter. The arbiter interacts with the HDPcache core. The cache core has
a data directory, a miss status holding directory (MSHR) that handles read misses, a replay table
(RTAB), which is used to deal with blocking conditions and allow out-of-order processing, and a
write buffer. For more details, see [11].
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Figure 3.28: Bit-stream generation using Vivado

Figure 3.29: High-performance cache block diagram

We will run the application payload on the CPU with cache enabled and we plan to report on
results in the future. Figure 3.29 shows a high-level view of the testing setup: an application
payload, consisting of OpenEMS and Linux, accesses the memory cached through the cache by
CPU instructions that use memory. In particular, we plan to benchmark the time from booting until
the first report of energy data in OpenEMS, as it has been set up for WP5 in a scenario without
the high-performance caching.
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3.2 Monitoring Infrastructure
Task 3.3 of WP3 focuses on the development of components and methodologies that provide
monitoring support for multiple purposes, ranging from performance monitoring in a safety-specific
context to power and energy monitoring, via on-line hardware-software monitoring infrastructures
that enable therefore the optimization of the overall system both at design time and at run time.

A multicore statistics unit (BSC) is integrated as part of the safety island, while context-aware
performance monitoring counters are extended with software context filtering capabilities to fur-
ther strengthen the monitoring of the safety island (TRT) and a configurable and programmable
co-processor dedicated to monitoring time contracts (OFFIS) can observe application-specific
hardware and software timing properties.

Finally, a dedicated methodology can deliver an on-line power monitoring infrastructure (POLIMI)
while considering the accuracy, area overhead, and side-channel information leakage metrics as
constraints in the power model identification phase.

Lead
IP Partner Dependencies Licensing
CA-PMC-IF
(3.2.1)

TRT CA-CORE (WP2), CA-BUS (WP2),
CA-PMC (3.1.6)

Permissive open-source

RTPM
(3.2.2)

POLIMI Monitored IP Proprietary

SafeSU
(3.2.3)

BSC None Permissive open-source

TCCP
(3.2.4)

OFFIS None Permissive open-source

Table 3.8: Overview of Task 3.3 contributions

D3.2 ISOLDE - public 29.04.2025



Deliverable D3.2 ISOLDE Page 72

3.2.1 Context-Aware PMC Interface (CA-PMC-IF) – TRT

3.2.1.1 IP Card

Basic Info

IP name Context-Aware PMC Interface (CA-PMC-IF)
License Open-source (SolderPad Hardware License v0.51)
Repository https://github.com/ThalesGroup/cva6-context-aware-monitoring.git

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4
Address Map Y (see Section 3.2.1.5)

Initiator Interface
Protocol N/A
Cached? N
IOMMU? N

Interrupts Interrupts Y (generates 1 interrupt)

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N/A
N/A

Software

Compiler Requires specialized compiler? N
Compiler repository -

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) (to be defined)
Standalone simulation? Y
(if standalone sim) SW requirements? Verilator
Integration documented / examples? Y

Synthesis
Is the IP synthesizable? Y

FPGA synthesis example available? Y (as component in CVA6 based
design, to be provided)

ASIC synthesis example available? N

Simulation Closed-source simulation? N
Open-source simulation? Y (Verilator)

Evaluation PPA results available? N

3.2.1.2 General Information

The CA-PMC-IF (short name for CA-PMC Interface) IP is part of the Context Aware Monitoring
framework developed by TRT. For an overview of the CA-PMC-IF IP and its function in the Context
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Aware Monitoring framework refer to Section 3.1.6.2 in page 38.

3.2.1.3 Purpose and Scope

The purpose of the CA-PMC-IF IP is to provide a way to program/control instantiations of CA-PMC
modules, e.g. the CA-PMC module of the CVA6 [29, 28, 17] RISC-V core, the CA-PMC module
of the cache level 2, etc. As such, the CA-PMC-IF is to be instantiated by CA-PMC modules. The
CA-PMC-IF module then provides and manages the counters of the CA-PMC module, and it also
provides the interfaces to access and configure these counters, leaving the CA-PMC module the
task to provide the events that will be counted.

The CA-PMC-IF module currently provides AXI 4 or AXI 4 Lite interfaces, which one is used
depends on the targeted design. Other interfaces might be provided/implemented if required.
The AXI interface provides an easy and standard way to connect the CA-PMC-IF (and thus the
CA-PMC) to an AXI bus so it can be accessed by cores connected to it, e.g. a supervision core.
The CA-PMC-IF address map provides means to configure and retrieve the different counters the
CA-PMC instantiating it provides.

Finally, the CA-PMC-IF also provides mechanisms to generate and manage interrupts when the
counters overflow. A single interrupt output signal is provided. This signal is to be connected to
an interrupt controller, e.g. PLIC.

3.2.1.4 Refined architecture description

An initial architecture of the CA-PMC-IF hardware component was presented in the Section 3.3.1
of Deliverable D3.1, and updated in Figure 3.30. Compared to the previous version, the current
CA-PMC-IF has integrated the counters logic, leaving only the events generation to the CA-PMC.
This simplifies the creation of new CA-PMC modules, the CA-PMC-IF taking care of the program-
ming interface, the counters management and the interrupts generation.
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Figure 3.30: CA-PMC-IF architecture

At the core of the CA-PMC-IF are the counters. Each counter contains register to select the
event the counter has to count and the value of the counter, i.e. the number of events that have
ocurred. Moreover, to control the context information a register with the current context is stored
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in the counter. The value field will be only updated when the traced event occurs in the stored
counter context. Each counter can generate one interrupt when the value register overflows, this
information is stored in a dedicated one-bit field of the counter control register (labelled as “ovf” in
Figure 3.30). The control register is used to enable/disable the counter, indicate if counter should
consider or not context information, to enable/disable the generation of interrupts when the value
register in the counter overflows and to check if the counter produced the overflow interrupt and
clean it.

The number of counters in a CA-PMC-IF instantiation is parameterizable at design time, with a
limit of 256 in the current design. The overflow interrupt generated by each of the counters is
combined into a single output signal by an or gate. To feed the counters with events and the
context information, the CA-PMC-IF simply forwards the information received through a dedicated
interface from the associated CA-PMC module to the counters.

Finally, the CA-PMC-IF provides an AXI interface to programmatically control the counters by
writing and reading them. Section 3.2.1.5 describes the address map provided by CA-PMC-IF
for that purpose. The CA-PMC-IF processes the AXI requests through a dedicated logic and
reads/writes the counters registers accordingly.

3.2.1.5 Memory-Mapped Interface

As described in Section 3.2.1.4 the main purpose of the CA-PMC-IF module is to provide a unified
counter infrastructure for CA-PMC modules and provide its memory-mapped interface to control
and read the CA-PMC counters.

Global CA-PMC-IF memory layout

Table 3.9 presents the memory layout of the CA-PMC-IF memory-mapped interface.

Address Name Size Description

BASE + 0x00 capabilities 16 Bytes Register describing CA-PMC-IF instance
features

BASE + 0x10 reserved 16 Bytes Reserved for future usage

BASE + 0x20 overflow 32 Bytes Register mapping the counters overflow
status

BASE + 0x40 counters Up to 8192B Up to 256 memory areas of 32 Byte for
each counter

Table 3.9: CA-PMC-IF memory-mapped interface

The CA-PMC-IF specific memory regions are decomposed into:

• capabilities register: This register provides information on the capabilities provided by the
specific instance of the CA-PMC-IF IP, such as the supported context width, the available
number of counters and so on.

• overflow register: This register maps the CA-PMC-IF counters control register overflow bit
(counter.control[ovf]).

• counters: This memory area holds memory areas for each counter provided by the CA-
PMC-IF instance.
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More details about each memory section are presented below.

capabilities register layout

The capabilities register provides read-only information about the CA-PMC-IF instance. Ta-
ble 3.10 shows the layout of this register.

version
07

reserved
815

ncounters
1623

reserved
2431

nevents
3239

reserved
4047

custom
4863

ctxlen
6471

reserved
7279

reserved
8095

reserved
96127

Table 3.10: CA-PMC-IF capabilities memory layout

The whole register is read only, any write is ignored. The register fields are defined as follows:

• version (bits 0 to 7): The first byte provides the CA-PMC-IF specification version the CA-
PMC-IF instance follows. This document describes the first version of such specifications,
i.e. version is equal to 1.

• ncounters (bits 16 to 23): This field indicates the number of counters supported by the IP.
• nevents (bits 32 to 39): This field indicates the number events supported by this IP. This field

also limits the event to count that can be set on the counters event register (counter.event),
i.e. the counter.event register can be set from 0 to nevents-1.

• custom (bits 48 to 63): Reserved for custom extensions of the CA-PMC-IF interface. Differ-
ent than zero if used, otherwise all bit should be set to zero.

• ctxlen (bits 64 to 71): Width of the software context value supported by the IP. The maximum
value this field can have in the current CA-PMC-IF specification is 32, for a 32-bit wide
software context.

Unused bits are reserved and should read as 0, and writes on them are ignored.

overflow register

This 32-byte, i.e. 256 bits, register maps the overflow bit field of the counters control mem-
ory region (counter.control.ovf) provided by the IP. Table 3.11 shows its layout. Bit 0 of this
register maps counter 0 control register overflow bit (eighth bit of the counter control register,
counter.control.ovf), bit 1 counter 1 overflow bit, bit 2 counter 2, and so on, up to capabili-
ties.ncounters. If capabilities.ncounters is smaller than 256, bits capabilities.ncounters to
255 of the overflow register are mapped to the value 0 and can not be modified.

Reading any bit of the overflow register gets the current value of the corresponding counter
overflow bit (counter.control.overflow), or 0 if it is not mapped to any counter. Writing a 0 to any
bit of the overflow register does not modify the corresponding counter overflow bit, and is ignored
if the bit is not mapped to any counter. Writing a 1 to any bit of the overflow register does set the
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ovf cnt63 - ovf cnt0
063

ovf cnt127 - ovf cnt64
64127

ovf cnt191 - ovf cnt128
128191

ovf cnt255 - ovf cnt192
192255

Table 3.11: CA-PMC-IF overflow register layout

corresponding counter overflow bit to 0, and is ignored if the bit is not mapped to any counter.

Counters memory layout

The counters memory region provides the registers of each of the performance counters provided
by the CA-PMC-IF, as defined by capabilities.ncounters. Each performance counter, counter,
memory area is organized as shown in Table 3.12.

control
07

event
815

reserved
1631

context
3263

value (or value l)
6495

value (or value h)
96127

Table 3.12: CA-PMC-IF counter memory layout

01234567

cntenovfenctxenreservedoverflow

Table 3.13: CA-PMC-IF counter.control memory layout

The following are the descriptions of the fields of each counter register:

• control register: A R/W register to control performance counter behavior, enabling/disabling
counting, overflow or context, and to check and clear the overflow interrupt status. Table 3.13
shows the counter.control register layout:

– cnten field (bit 0): Enables (1) or disables (0) event counting.
– ovfen field (bit 1): Enables (1) or disables (0) the generation of overflow interrupt on

overflow of the counter.value field.
– ctxen field (bit 2): Enables (1) or disables (0) the filtering of events to count based on

the context.
– overflow field (bit 7): This a status bit indicating if the counter has produced an overflow

interrupt. The counter interrupt signal maps the value in this bit. An overflow interrupt is
generated when increasing counter.value because of the ocurrence of the monitored
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event and resulting counter.value is smaller than before. This bit remains set to 1 once
and interrupt has been generated. To set this bit to 0, i.e. to acknowledge the interrupt,
a write request with a value of 1 on this bit needs to be issued. Writing a 0 to this bit
does not modify its status.

• event register: A R/W 8-bit register specifying the hardware event to be monitored. Writing a
value equal or bigger than capabilities.nevents sets this field to an implementation defined
value smaller than capabilities.nevents.

• context: A R/W 32-bit register specifying the context value used restrict hardware event
counting to specific software contexts.

• value: A R/W 64-bit register increased each time the monitored event (counter.event) oc-
curs. This register can be accessed with a 64-bit request or with two 32-bit requests to its
subparts: counter.value_h for the higher 32-bits and counter.value_l for the lower 32-bits.
Writing this field is not recommended when the counter is enabled (counter.control.cnten
equals to 1), specially when writing using 32-bit write requests. When using 64-bit read
requests the counter.value register can be read on a single 64-bit read request. When
using 32-bit read requests the counter.value_h and counter.value_l registers should be
read when the counter is disabled (counter.control.cnten equals to 0) or if enabled using
the following sequence to ensure the correctness of the read 64-bit value:

1. read counter.control.value_h,
2. read counter.control.value_l,
3. read counter.control.value_h,
4. if value read in step 1 is different than the value in step 3 then repeat the sequence (i.e.

go back to step 1), otherwise the read of the performance counter value is finished.

Reserved bits are set to zero, and write accesses are ignored.

3.2.1.6 Hardware interfaces

The CA-PMC-IF provides three interfaces:

1. An AXI or AXI-Lite bus slave interface (slave): This interface allows to access the CA-PMC-
IF and the counters it provides programmatically using the memory map described in Sec-
tion 3.2.1.5. This interface is parameterizable at design time providing a full AXI interface or
a simplified AXI-Lite, and to define the bus characteristics, like address and data width.

2. A output interrupt signal (output): This interface provides a single bit signal indicating that
at least one of the CA-PMC-IF counters has produced an overflow interrupt, see Sec-
tion 3.2.1.4.

3. Monitored module event and context signals (input): This interface allows the monitored CA-
PMC module (e.g. a core, a cache module, etc.) to provide to the CA-PMC-IF module the
events produced at each cycle and their context. The number of input events the CA-PMC-
IF is parameterizable, and each event signal is one width wide, i.e. event occured during a
cycle or not. The context signal is currently shared by all the events, i.e. there is a single
context signal. The width of the context signal should match the capabilities.ctxlen value
(see Section 3.2.1.5 Global CA-PMC-IF memory layout in page 74).
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3.2.1.7 ISA specialization

The CA-PMC-IF IP does not require any modification the ISA. However, to exploit the context
monitoring capability IPs generating events should be capable to pass the context information
(through the context signal presented in Section 3.2.1.6). Generators of this context information
might need ISA modifications to generate it, as proposed by the CA-CORE extension developed
in Task T2.3.

3.2.1.8 Evaluation prototype

The CA-PMC-IF IP has been evaluated in a dedicated Verilog testbench to verify its operation.
Furthermore, it has been integrated into a CVA6 CA-PMC module to evaluate its integration, syn-
thesis and operation. For further information on that integration refer to Section 3.1.6.7 (page 42).
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3.2.2 Run-Time Power Monitoring Instrumentation (RTPM) – POLIMI

3.2.2.1 IP Card

Basic Info

IP name Run-Time Power Monitoring Instrumentation
License Closed-source proprietary
Repository

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI
Address Map TBD

Initiator Interface
Protocol AXI
Cached? N
IOMMU? N

Interrupts Interrupts No

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA None

Software

Compiler Requires specialized compiler? N
Compiler repository

Hardware Abstraction Layer N/A?

High-level API
Is there a high-level API/SDK? N
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) TBD
Standalone simulation? TBD
(if standalone sim) SW requirements? TBD
Integration documented / examples? TBD

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (AMD Vivado)
Open-source simulation? N

Evaluation PPA results available? N

3.2.2.2 General Information

The automatic generation of the run-time power monitoring infrastructure delivers the capability
to provide periodic power estimates from the switching activity of a set of signals in the monitored
components.
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3.2.2.3 Purpose and Scope

The effectiveness of run-time optimization techniques that aim to improve the energy efficiency
of a target computing platform is strongly tied to the quality of the measurements or estimates
of power consumption provided by a run-time power monitoring infrastructure. The latter can
perform indirect estimation of the dynamic power consumption of the target computing platform
by analyzing its run-time statistics such as the switching activity of microarchitectural signals,
monitored through dedicated hardware counters.

3.2.2.4 Refined Architecture Description

The monitoring infrastructure consists of a set of switching activity counters attached to corre-
sponding inputs and output signals of the system components of which it is required to monitor
dynamic power consumption. The power estimate value obtained by aggregating the counter
values is exposed through a hardware register.

Netlist
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traces
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3A. Arch.
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4. Learning-
based model
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infrastructure
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Figure 3.31: Flowchart diagram of the flow for run-time power monitoring.

The automatic instrumentation of a run-time power monitoring infrastructure is carried out by tak-
ing the RTL description of the target computing platform and its corresponding testbench as inputs
and producing a gate-level netlist enhanced with power monitoring capabilities. This process, de-
picted in Figure 3.31, can be divided into five sequential phases, each contributing to the final
implementation of the monitoring infrastructure.

1. Target implementation – The first phase utilizes the standard hardware design flow to
process the RTL description of the target platform. This includes synthesis, placement,
and routing steps, resulting in a gate-level netlist of the design. This netlist serves as the
foundation for all subsequent stages of the framework.

2. Design simulation – In the second phase, the post-route gate-level netlist is subjected
to a detailed simulation that exercises all parts of the design using a comprehensive input
dataset. The goal is to stress the entire computing platform to ensure thorough coverage
of its functionality. This phase outputs a value change dump (VCD) file, which contains
detailed records of the switching activity of the design, enabling the calculation of power
consumption traces. However, the time required for simulation grows significantly with the
complexity of the target platform.

3. Data extraction – The third phase processes the VCD file to extract relevant information
about the switching activity and to compute the power consumption traces associated with
the target design. This step is computationally intensive, particularly for large platforms or
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when higher temporal resolution is required for the power traces. The resulting power traces
and switching activity data form the basis for model identification in the next phase.

4. Model identification – The fourth phase involves creating a power model tailored for run-
time monitoring. This model identifies a subset of signals from the target platform and
assigns them corresponding weights by analyzing the correlation between the extracted
switching activity and the computed power traces. The objective is to minimize the difference
between the actual power trace and the one generated by the identified power model, while
also satisfying constraints such as limiting the number of signals used as model inputs,
minimizing the area and power overheads of the corresponding monitors [8], and avoiding
side-channel leakage [30].

5. Monitor implementation – In the fifth and final phase, the framework automatically instru-
ments the identified power model into the original design. The signals selected by the model
are wrapped in additional hardware that periodically samples their switching activity and cal-
culates the corresponding power consumption. This calculated power consumption is made
accessible through an architectural register, enabling real-time power monitoring without
significant interference with the platform’s primary functionality.
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Figure 3.32: Architecture of single-toggle and Hamming-weight counters measuring the switching
activity of a multi-bit signal.

The architecture of the toggling activity counters can be implemented in two different ways, de-
pending on whether they measure single-toggle or Hamming-weight counts, as shown in Figure
3.32.

A single-toggle counter counts whether there is at least one change in the signal on the monitored
physical wire. It takes the multi-bit input signal and combines a XOR-tree network with an OR gate
to output 1 or 0 depending on whether at least one bit of the signal toggled, and the produced
value is added to the cumulative switching activity.

Conversely, a Hamming-weight counter counts instead the number of bits in the signal that
switched their values. It takes the multi-bit input signal and combines a XOR-tree network with an
adder to output the number of switching bits, adding the latter value to the cumulative switching
activity.

Concerning area overhead, the number of flip-flops for Hamming-weight counters increases with
the size of the monitored signal and the number of clock cycles in the time window, while in the
case of single-toggle counters it depends only on the time window, since for each clock cycle
they perform at most a unitary increment. Hamming-weight counters also show a higher power
overhead, due to their higher switching activity.
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The run-time monitoring infrastructure instantiated by the automatic generation flow may contain
both single-toggle and Hamming-weight counters. Regardless of the type of such counters, their
switching activity values are multiplied by their respective model weights and aggregated to obtain
the estimated power consumption at each time interval.

3.2.2.5 Memory-Mapped Interface

An AXI memory-mapped register provides, at each time interval, the estimate of power consump-
tion computed by the run-time power monitoring infrastructure. This register holds the estimated
power consumption value provided by the run-time power monitoring infrastructure at each time
interval. The estimate is periodically updated by the monitoring infrastructure, according to the
selected time resolution. The register is read-only and can be accessed by the rest of the system
through a read operation at the corresponding memory-mapped address.

3.2.2.6 ISA Specialization

No ISA specialization is required, as the IP can be accessed via a standard AXI memory-mapped
read operation.

3.2.2.7 Evaluation Prototype

The effectiveness of the automatic instrumentation of a run-time power monitoring is evaluated,
according to a variety of quality metrics, on a set of HLS-generated accelerators. The quality of
the instantiated monitoring infrastructures is measured through their area and power overheads
as well as the root-mean-square error (RMSE) of their estimations of run-time power consumption.

The target HLS-generated accelerators are implemented on an AMD Artix-7 100 FPGA that fea-
tures 63400 lookup tables (LUTs), 126800 flip-flops (FFs), 240 digital signal processing (DSP)
elements, and 135 36kb blocks of block RAM (BRAM).

The HLS-generated designs include accelerators for the AES, Blowfish, GSM, and MIPS appli-
cations of the CHStone [16] benchmark suite for C-based HLS. The AMD Vivado toolchain was
employed for HLS, RTL synthesis and implementation, bitstream generation, FPGA programming,
and simulation.

The experiments explored nine combinations of the four HLS-generated accelerators, producing
a set of designs with a large variability in their use of the FPGA resources and in their maximum
achievable operating frequency. The HLS-generated designs operate at clock frequencies ranging
from 100 MHz to 150 MHz, consume between 0.18 W and 0.50 W, and occupy up to 84%, 57%,
69%, and 100% of the LUT, FF, BRAM, and DSP resources provided by the target FPGA chip.

The identification of the power model and the evaluation of power estimates obtained by the
monitoring infrastructure are carried out by splitting the collected dataset of power traces and
microachitectural statistics according to a 80:20 ratio and targeting a 10µs temporal resolution.

The first-order linear model takes as its inputs the switching activity of a selected subset of input
and output signals of the modules in the design hierarchy and outputs the estimated power con-
sumption. The hardware counters that monitor the selected signals are either single-toggle ones,
counting any change in the target multi-bit signal, or Hamming-weight counters, that count the
number of bits that toggled their values.
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The experimental results show area and power overheads below 3% and an RMSE below 5%, on
par with the run-time power monitoring solutions from the open literature [31].
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3.2.3 Safety-Related Statistics Unit (SafeSU) – BSC

3.2.3.1 IP Card

Basic Info

IP name SafeSU
License Open-source (MIT License)

Repository https://github.com/bsc-loca/SafeSU/tree/
9b7f520a258a97b462e6a64931147246c5e1743e

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol APB 32b
Address Map Base (0x80100000)

Initiator Interface
Protocol APB 32b
Cached? N
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA -

Software

Compiler Requires specialized compiler? N
Compiler repository -

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? Y

SDK repository https://github.com/bsc-loca/SafeSU/
tree/main/drivers

Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Y (Readme.md)
Standalone simulation? Y
(if standalone sim) SW requirements? QuestaSim, Vivado 2020.2, Verilator
Integration documented / examples? -

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? Y

Evaluation PPA results available? DOI 10.1109/ETS50041.2021.9465444
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3.2.3.2 General Information

The SafeSU is a modular and scalable Performance Monitor Unit (PMU) that can be connected to
any on-chip interconnect and allows multicore interference observability and controllability.

3.2.3.3 Purpose and Scope

The SafeSU builds on a number of components, namely, the Contention-Cycle Stack (CCS), the
Request Duration Counter (RDC) and the Maximum-Contention Control Unit (MCCU).

• The CCS offers observability features by providing multicore time-interference breakdown.
• The RDC provides end users with an observability channel to monitor high-watermark la-

tencies per event and core, as needed for interference bounding (e.g., during worst-case
execution time estimation).

• The MCCU offers controllability capabilities with interference quota monitoring and enforce-
ment, alerting the user when allocated quotas are exceeded.

3.2.3.4 Place in the System
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Shared L3 cache

CORE 0 CORE 1 CORE 2 CORE 3

SafeSU
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events

Event counters

Figure 3.33: SafeSU system integration

The monitoring interface of the SafeSU depicted in Figure 3.33, is AMBA AHB and AXI compliant.
The SafeSU is intended to be connected to those types of interfaces, and it is particularly use-
ful if those interfaces have either multiple managers or are connected to subordinates receiving
requests from multiple managers. For instance, its best location is normally connected to the
interface used by the cores and/or accelerators to access shared caches or memory controllers
so that ongoing traffic can be monitored, and eventually compared to predefined quotas to ensure
that no manager abuses the use of relevant shared resources.

SafeSU’s programming port is compliant with AMBA APB, although it will be extended to AMBA
AXI in the future.
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3.2.3.5 Architecture

The main components of the SafeSU are described next and can be seen in the block diagram of
Figure 3.34:

• Self-test: configures the counters’ inputs to a fixed value, bypassing the crossbar and ig-
noring the SoC inputs. This mode allows for tests of the software and the unit under known
conditions.

• Crossbar: routes any input event to any counter.
• Counters: A group of simple counters with settable initial values and a general control reg-

ister.
• Overflow: Detects counters’ overflow. It can raise interrupts upon overflow with its dedicated

interruption vector and per-counter interrupt enable.
• Quota: Deprecated as replaced by MCCU (it may be excluded in a future release).
• MCCU (Maximum Contention Control Unit): Contention control measures for each core for

the particular event type that has been programmed to be monitored. It can raise an inter-
rupt if a contention threshold is exceeded. It accepts real contention signals or estimation
through weights.

• RDC (Request Duration Counters): Provides measures of the pulse length of a given input
signal (watermark). It can be used to determine maximum latency and cycles of uninter-
rupted contentions. Each of the counters can trigger an interrupt at a user-defined thresh-
old.

Crossbar

RDC

Overflow

Counters

Quota

MCCU

Memory 
Mapping

Self Test

VHDL wrapper

AHB Interface

Interface Agnos�c sta�s�cs unit

Figure 3.34: SafeSU architecture block diagram

3.2.3.6 Interfaces

AMBA AHB/AXI interface:

The AHB or AXI interface is a subordinate interface used to snoop traffic. It is fully compliant with
the specification of the corresponding protocol. Note that, in general, a SafeSU instance supports
only one of those interfaces.
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AMBA APB interface

The AMBA APB subordinate interface is used to program the control registers of the SafeSU. The
control registers are as follows:

Main configuration and self-test
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Figure 3.35: SafeSU - Base Configuration Register (0x000)

Reset and enable of overflow, quota, and regular counters’ operations can be performed with the
Base Configuration Register shown in Figure 3.2.3.6. All signals are active high.

Self-test mode allows bypassing the input events from the crossbar and instead using a specific
input pattern where signals are constant. This mode can be used for debugging. After the addition
of the crossbar and debug inputs, there is a certain overlap. The same results can be achieved
with the correct crossbar configuration. Nevertheless, it has been included in this release for
compatibility.

These are the self-test modes for each configuration value of the field Selftest mode part of the
register shown in Figure 3.2.3.6:

• 0b00: Events depend on the crossbar. Self-test is disabled.
• 0b01: All signals are set to 1.
• 0b10: All signals are set to 0.
• 0b11: Signal 0 is set to 1. The remaining signals are set to 0.
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Figure 3.36: SafeSU - Crossbar Configuration Register 0 (0x0AC)

This feature allows routing any of the input signals of the SafeSU into any of the 24 counters of
the SafeSU (see Table 3.14). Each one of the counters has a 5-bit configuration value. These
values are stored in the registers shown in Figures 3.36, 3.37, 3.38 and 3.39. All the configura-
tion values are consecutive. Thus, some values may have configuration bits in two consecutive
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Figure 3.37: SafeSU - Crossbar Configuration Register 1 (0x0B0)
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Figure 3.38: SafeSU - Crossbar Configuration Register 2 (0x0B4)
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Figure 3.39: SafeSU - Crossbar Configuration Register 3 (0x0B8)

memory addresses. Examples of this are Output 6, 12, and 19 in our current configuration. As a
consequence, the previous outputs may require two writes to configure the desired input signal.

Configuration fields match one-to-one with the internal counters. So, the field Output 0 matches
with counter 0, Output 1 with counter 1, etc.

As a usage example, suppose the user wants to route the signal pmu_events(0).icnt(0) to the
internal counter 0. The field Output 0 of the register in Figure 3.36 shall match the index of the
signal in the table of inputs. In this case, the index is 2. After this configuration, the event count
will be recorded in counter 0. The addresses for counter values range between 0x04 and 0x60.

Overflow

The user can enable overflow detection for each of the counters in the previous section (Counters).
Enables are active high and individual for each counter, as indicated in the Overflow Interrupt
Enable Mask register depicted in Figure 3.40. If a counter with overflow detection active wraps
over the maximum value, the corresponding bit of the Overflow Interrupt Vector register depicted
in Figure 3.41 will become 1, and AHB interrupt number 6 will become active. The default AHB
interrupt mapping can be modified within the file ahb_wrapper.vhd.
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Output Counters Overflow MCCU RDC
0 Yes Yes Core 0 Yes
1 Yes Yes Core 0 Yes
2 Yes Yes Core 1 Yes
3 Yes Yes Core 1 Yes
4 Yes Yes Core 2 Yes
5 Yes Yes Core 2 Yes
6 Yes Yes Core 3 Yes
7 Yes Yes Core 3 Yes
8 Yes Yes No No
9 Yes Yes No No
10 Yes Yes No No
11 Yes Yes No No
12 Yes Yes No No
13 Yes Yes No No
14 Yes Yes No No
15 Yes Yes No No
16 Yes Yes No No
17 Yes Yes No No
18 Yes Yes No No
19 Yes Yes No No
20 Yes Yes No No
21 Yes Yes No No
22 Yes Yes No No
23 Yes Yes No No

Table 3.14: SafeSU - Crossbar outputs and SafeSU capabilities
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Figure 3.40: SafeSU - Overflow Interrupt Enable Mask (0x064)

Quota

This feature has been replaced by the MCCU and will disappear in future releases. Usage is not
recommended.

MCCU

The MCCU allows monitoring for a subset of the input events and tracking the approximate con-
tention that they will cause. Currently, events assigned to counters 0 to 7 can be used as inputs
of the MCCU. Thanks to the crossbar, any of the 32 SoC signals can be used by the MCCU.
Figure 3.42 shows the internal elements required to monitor the quota consumption of one core,
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Figure 3.41: SafeSU - Overflow Interrupt Vector (0x068)

given that there are four input events. When the events become active, they pass the value as-
signed in the weight register depicted in Figure 3.43 for the given signal to a series of adders.
The addition is subtracted from the corresponding quota register, mapped to addresses 0x088 to
0x094. If the remaining quota is smaller than the cycle contention, an interrupt is triggered.

Figure 3.42: SafeSU - Block diagram of the MCCU mechanism for one core
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Figure 3.43: SafeSU - MCCU Event Weights Register 0 (shared with RDC; 0x098)

In the current release, the MCCU can be reset and activated with the respective fields of the
MCCU Main Configuration register depicted in Figure 3.44. The fields labelled as Update Quota
Core x are used to update the available quota of each core (addresses 0x088 to 0x094). While
Update Quota Core x is high, the content of the corresponding quota register (addresses 0x088
to 0x094) is assigned to the available quota, as configured in registers 0x078 to 0x084. Once
released (low), the available quota can start to decrease if the MCCU is active. The current quota
can be read while the unit is active.

In the current release, each core can monitor two input events. The MCCU module is parametric.
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Figure 3.44: SafeSU - MCCU Main Configuration (0x074)
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Figure 3.45: SafeSU - MCCU Event Weights Register 1 (shared with RDC; 0x09c)

More events can be provided in future releases. Table 3.14 listing the outputs shows the available
features for each crossbar output. Under the column MCCU, you can see towards which core
quota the event will be computed. The unit provides one interrupt for each of the monitored cores.
Quota exhaustion for cores 3, 2, 1, and 0 is mapped to AHB interrupts 10, 9, 8, and 7, respectively.

Weights for each monitored event are registered in the MCCU Event Weights Register x registers
depicted in Figures 3.43 and 3.45. Currently, each weight is an 8-bit field. Each input of the MCCU
maps directly to the outputs of the crossbar. Thus, the weight for the MCCU input 0 corresponds
to the signal in crossbar output 0.

RDC

The Request Duration Counter or RDC depicted in Figure 3.46 is comprised of a set of 8-bit
counters and comparators that allow monitoring the length of a CCS signal, recording the number
of clock cycles of the longest pulse and comparing this number with the defined weight.

The current release provides monitoring for crossbar outputs 0 to 7. The weights for each signal
are shared with the MCCU and are stored in the RDC Event Weights Register x registers depicted
in Figure 3.48. Weights are 8-bit fields. Counters have overflow protection, preventing the count
from wrapping over the maximum value. The maximum value for each event (watermarks), is
stored in the RDC Watermark Register x registers depicted in Figure 3.49. The RDC shares the
main configuration register with the MCCU (Figure 3.44). Through this register, the unit can be
reset and enabled through the corresponding fields. Such fields are active high signals. The
unit does provide access to the internal interrupt vector (Figure 3.47), but such information is
redundant and may be removed in future releases. Given the current watermarks and assigned
weights, the events responsible for the interrupt can be identified. The RDC interrupt has been
routed to AHB interrupt 11.
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Figure 3.46: SafeSU - Block diagram of the RDC mechanism
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Figure 3.47: SafeSU - RDC Interrupt Vector (0x0A0)
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Figure 3.48: SafeSU - RDC Event Weights Registers 0 and 1 (shared with MCCU; 0x098, 0x09C)
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Figure 3.49: SafeSU - RDC Watermark Registers 0 and 1 (0x0A4, 0x0A8)

Software interface

The control registers of the SafeSU, as well as the counters by the SafeSU monitoring the events
must be accessed (modified and/or read) only by software components with appropriate priv-
ileges. To realize this, the SafeSU registers are mapped to specific physical addresses upon

D3.2 ISOLDE - public 29.04.2025



Deliverable D3.2 ISOLDE Page 93

integration into the platform. The hypervisor (XtratuM Next Generation, also known as XNG, in
the particular case of the SafeSU integration in ISOLDE) is in charge of managing privileges,
allowing only specific partitions to be updated, in accordance with SafeSU’s registers.

The preferred configuration consists of allowing only a single partition to modify SafeSU’s configu-
ration registers and read SafeSU’s counters, whereas the other partitions would not be allowed to
access those registers. XNG guarantees this behavior, building on the MMU existing in the NOEL-
V cores, which also realizes the RISC-V ISA hypervisor extension. Overall, the XNG hypervisor
provides space isolation for the SafeSU’s registers, hence achieving freedom from interference.
This is in line with safety standards guidelines for items with integrity requirements.

In order to allow a partition to manage the SafeSU device from a high-level perspective, a driver at
the hypervisor level has been developed and integrated by FENTISS within XNG, implementing
a set of hypercalls. The new hypercalls defined to manage the SafeSU device are specified in
Table 3.15, in which a description is included, and can be used by a partition with SafeSU access
permissions.

For defining if a partition has access to the SafeSU device a new attribute in the XtratuM Con-
figuration Files (XCF) has been added. In the case that “safesu” attribute is present in the XCF
of a partition, that partition would be allowed to access SafeSU registers and the implemented
hypercalls could be freely used. Otherwise, if the attribute is not set, if the partition tries to use
any of the SafeSU hypercalls, an error code meaning invalid configuration will be returned.

Finally, all the interrupts which generate the SafeSU device need to be delegated to the partition
in the XCF, so the partition can receive them. It is also important to note that the partition should
allow the interrupts reception, unmask the desired interrupts and install the desired handlers to
be triggered when an interrupt is received. These interrupts’ management can be done through
the use of other XNG’s hypercalls.

3.2.3.7 Evaluation Prototype

Next, we evaluated the SafeSU by integrating two instances in the SELENE SoC and implemented
on a Xilinx FPGA operating at 100 MHz, as seen in Figure 3.33. One instance of the SafeSU,
which we called SafeSU_AHB is connected to the AMBA AHB Bus and will calculate the con-
tention occurring in this interface. Contention will occur when multiple cores are accessing the
bus, as this interface only allows one manager operation at a time, and the other managers will
be waiting to get granted access. At this level, the SafeSU_AHB will also be using the quota
mechanism, MCCU, together with hardware interruptions when the user-defined quotas for each
core are exceeded.

Evaluation of the integration will use a set of memory-stressing kernels on cores 2,3,4, while core
1 will be used as the critical application. Before starting execution on core 1, SafeSU configuration
will be set with pre-defined quotas for cores 2,3,4 to ensure that when exceeded, they lose access
to the bus. Execution times will be compared with the same execution but without quotas to
observe that the SafeSU monitoring and quotas operation reduce the timing overhead of the
critical application due to the contention suffered.

Similarly, the SafeSU connected to the AXI Bus, named SafeSU_AXI will monitor the contention
happening at an outer level, in the AXI interface. Contention here will happen when cores access-
ing L2 create a miss and require access to main memory which is done through the AXI bus and
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Hypercall Description
retCode XSafeSuAssignEvent2Counter(
counter, eventId)

Assigns a specific event to a specific counter.

retCode XSafeSuCountersEnable() Enables all SafeSU counters.
retCode XSafeSuCountersDisable() Disables all SafeSU counters.
retCode XSafeSuCountersReset() Resets all SafeSU counters.
retCode XSafeSuGetCounterVal(
counter, *value)

Gets the current value of a specific counter.

retCode XSafeSuRdcEnable() Enables the monitoring of the events’ dura-
tion.

retCode XSafeSuRdcDisable() Disables the monitoring of the events’ dura-
tion.

retCode XSafeSuRdcReset() Resets the status of the RDC.
retCode XSafeSuRdcSetMaxDuration(
counter, duration)

Sets the maximum allowed duration for a
given counter (compatible with RDC monitor-
ing).

retCode XSafeSuRdcReadWatermark(
counter, *value)

Reads the current maximum value for a given
counter.

retCode XSafeSuMccuEnable() Enables contention control.
retCode XSafeSuMccuDisable() Disables contention control.
retCode XSafeSuMccuReset() Resets the status of the MCCU.
retCode XSafeSuMccuSetQuotaLimit(
coreId, quota)

Sets the maximum contention quota for a
specific core.

retCode XSafeSuMccuGetQuotaRemaining(
coreId, *value)

Gets the remaining contention quota for a
specific core.

retCode XSafeSuMccuSetEventWeights(
counter, weight)

Assigns weights to MCCU events for a given
counter.

retCode XSafeSuOverflowEnable() Enables counters overflow detection.
retCode XSafeSuOverflowDisable() Disables counters overflow detection.
retCode XSafeSuOverflowReset() Resets the status of the overflow submodule.
retCode XSafeSuOverflowSetIrqMask(
mask)

Configures the overflow interrupt enable
mask, enabling the overflow detection for the
counters set in the mask.

retCode XSafeSuOverflowGetIrqStatus(
*mask)

Gets the status of the active interrupts in the
overflow submodule.

Table 3.15: Hypercall table implemented within XNG for SafeSU device support

will compete with the accelerators integrated in the system.

The evaluation on this case will consist of only activating core 1, while the rest of the cores will be
deactivated. Instead, the accelerator will be configured to access frequently the AXI bus. Then,
the SafeSU_AXI will monitor the contention and, similarly to the other SafeSU use the quota
mechanism to ensure that the contention created by the accelerator is limited.
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3.2.4 Time Contract Monitoring Co-Processor (TCCP) – OFFIS

3.2.4.1 IP Card

Basic Info

IP name Time Contract Monitoring Co-Processor (TCCP)
License Apache V2.0
Repository not ready yet

Architecture

Clock
Number of clock domains 2
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI
Address Map N.A.

Initiator Interface
Protocol AXI
Cached? N
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. cores? N/A
Parameteric config? N/A

Programmability Contains programmable cores? Y
ISA RISC-V (cv64a6)

Software

Compiler Requires specialized compiler? Y
Compiler repository N/A (WP4)

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository -
Is there a domain-specific compiler? Y

Integration

IP Distribution

Manifest type (if any) -
Standalone simulation? N
(if standalone sim) SW requirements? -
Integration documented / examples? -

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? N
ASIC synthesis example available? N

Simulation Closed-source simulation? N
Open-source simulation? Y (SystemC TCCP simulation)

Evaluation PPA results available? N

3.2.4.2 General Information

As mentioned in Deliverable D3.1 (Section 3.3.4), this module serves as a modular and compos-
able time contract monitoring co-processor. The monitoring approach builds upon previous work
from the VE-VIDES project [10], a German-funded initiative, and extends earlier research [27]
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conducted in EU-funded projects such as Productive4.0.

This co-processor is designed to support a formal Contract-Based Design (CBD) language [26]. It
must handle fundamental timing properties, including aging, event occurrence, and reaction. Addi-
tionally, it should facilitate the monitoring of non-temporal properties, such as power consumption
or ensuring that a specific controller maintains a parameter within a defined range over a given
time frame. Examples include running closed-loop motor control in parallel with a computationally
intensive task or verifying that a complex AI algorithm consistently completes its execution within
a specified period.

Moreover, TCCP must be capable of monitoring multiple properties simultaneously. The functional
and performance requirements of TCCP are detailed in Deliverable D1.2 (Section 3.3.2).

As shown in Figure 3.50, the contract-based runtime monitoring approach consists of three inter-
acting components: At its core, the Time Contract Co-Processor (TCCP) connects to two other
components, the TCCP-Compiler and the observer interfaces. The TCCP executes contract-
based specifications in hardware, it observes various event sources via an observer interface.
The observers are minimalistic adapters to source data, like a RISC-V trace port to observe com-
putational progress or a memory content observer. The TCCP monitors events according to its
programmable configuration derived from contract specifications. These specifications are pro-
cessed by the TCCP compiler, which generates a configuration program for the TCCP. The TCCP
compiler is build as part of WP4 in Task T4.3, while the target architecture is part of the automotive
demonstrator in WP5, Task T5.2.
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Figure 3.50: Time Contract Co-Processor (TCCP).

3.2.4.3 Purpose and Scope

The purpose of the TCCP is to advance the RISC-V ecosystem by developing high-performance
architectures that incorporate the safety concept of contract-based monitoring. The scope in-
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cludes multiple monitors for various properties, each with multiple interfaces, all operating simul-
taneously.

3.2.4.4 Refined architecture description

The refined architecture of the Monitoring Unit (Figure 3.50), as depicted in Figure 3.51, illustrates
the processing flow from the Trace Interface to the Report Interface, passing through the FIFO-,
Contract Fetch-, and Contract Check modules. These modules may operate in different clock
domains, indicated by color coding: light blue for the Monitor Clock domain and orange for the
Observer Clock domain.

The Trace Interface collects multiple incoming streams from observers, each monitoring different
properties at various points in the architecture. It transmits an event to the FIFO, consisting of
an Observer ID, Location, Data Value, and timestamp. The Observer ID identifies the monitored
property, the Location points to a program counter or other observed data, and the timestamp is
generated using the TCCP clock or the target’s clock. The FIFO buffers multiple incoming events
from various traces. It has a fixed size, which can be adjusted, and reports any FIFO overruns.
The Contract Fetch module attempts to match incoming trace events with one or more monitors.
If a match is found, it enriches the event with monitor values and sends it to the Contract Check
module. The Contract Check module cyclically checks each active monitor. Incoming events may
initiate a new monitor, reset an existing one, or trigger a violation of one or more monitors. Any
violations are then reported by the Report Interface.

- Observer ID
- Location
- Data Value
- timestamp

- output_rdy
- Contract ID
- Start/Eval Flag
- Data Value
- timestamp
- startInterval
-stopInterval

Monitor Table Contract State

- Observer ID
- Location
- Data Value
- timestamp

- Observer ID
- Location

Trace Interface

Report Interface

FIFO Async

Observer Clock
Monitor Clock

Contract Fetch

FIFO Overrun

Contract Check

Report_ContractViolation
- Contract ID

Monitor

Figure 3.51: Refined Architecture of Time Contract Co-Processor (TCCP).

3.2.4.5 Interfaces

As illustrated in Figure 3.50, the TCCP features three interfaces: a Configuration Interface (Config
Interface), a Trace Interface and a Report Interface.
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The Config Interface is used to transmit the monitoring information, derived from requirements
and specifications, to the co-processor. This communication is planned to occur via an AXI Bus.

The Trace Interface connects the TCCP to the targeted modules through multiple Observers.
Each Observer directly connects to gather information about a specific property, such as the
current program counter or the power usage of a component.

The Report Interface collects information about violated contracts or monitors and provides details
about the violated contract, including its possible priority. It can also optionally trigger an interrupt.

3.2.4.6 Evaluation prototype

The evaluation concept is divided into three different stages and two different scenarios.

In the initial stage, SystemC is used to test the system using benchmarks derived from specific
scenarios, simulating the system’s behavior under various conditions to ensure it meets the re-
quired specifications and behaves as intended.

The second stage focuses on developing a custom testbench for the SystemVerilog simulation
environment with Verilator. This testbench is designed to verify the functionality of the system
within a minimal simulation environment.

The last stage involves testing two distinct scenarios to evaluate the system’s capabilities in real-
world applications. The first scenario tests the capabilities of the TCCP with the Trace Ingress Port
Interface on a CVA6 architecture, developed by SYSGO and UNIBO. The second scenario tests
the capabilities within the automotive demo use case of Task T5.2. Here, the TCCP is integrated
into a NoelV architecture and coupled with a custom interface to an IR LED supervisor and with
either a custom interface or AXI to the AI-ML Accelerator developed by FotoNation.
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4 Conclusion
This deliverable provided refined architecture definitions and implementation details for the safety
and security related hardware modules and extensions that are developed within WP3 (Acceler-
ators and Extensions) of the ISOLDE project. The deliverable structure follows the WP3 tasks’
structure as introduced in deliverable D3.1 that was presenting the early architecture of the WP3
hardware modules, pointing out technical progress since previous year deliverable.

Each specific safety / security hardware module described in this deliverable is presented together
with:

• an IP card summarizing technical, licensing and availability of the hardware module.
• Both general context information as well as a presentation of the purpose and scope of

the hardware extension.
• A refined architecture as well as both the software and the hardware interfaces of each

module.
• Potential toolchain and ISA-specific customizations.
• The evaluation prototype, reporting the implementation development and early results

prior to the integration infto the WP5 use-cases.

Based on this document, WP5 use-cases will select which safety / security related hardware
extensions will be integrated, together with technologies from WP2 (Foundation Cores) and WP4
(Software Tools), paving the way to RISC-V-based safe & secure high-performance embedded
computing systems.

With regards to WP3, this delivarble is an intermetiate report that will be finalized as part of
Deliebrable D3.4 (Final implementation for Safety and Security Module) in month M33.
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Acronyms and Definitions
Acronym Description
ACC-BIKE ACCelerator for post-quantum key encapsulation mechanism BIKE
ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
AHB Advanced High-performance Bus
AI Artificial Intelligence
ALU Arithmetic Logic Unit
AMA AI/ML Accelerator
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASCON Lightweight authenticated block cipher
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction Set Processor
ASLR Address Space Layout Randomization
AXI Advanced eXtensible Interface
AXI-MM AXI Memory Mapped
AXIS AXI Stream
BCFI Backward-Edge Control Flow Integrity
BRAM Block RAM
BS Base Station
CA-PMC Context-Aware Performance Monitor Counter
CA-PMC-IF Context-Aware PMC Interface
CBD Contract Based Design
CCS Contention Cycles Stack
CE Computing Element
CFI Control Flow Integrity
CNN Convolutional Neural Network
CORDIC Coordinate Rotation Digital Computer
COP Call-Oriented Programming
CPU Central Processing Unit
CPS Cyber-Physical Systems
CSR Control and Status Register
CTM Cryptographically Tagged Memory
CV-X-IF Core-V eXtension Interface
DBB Digital Base Band
DDR Double Data Rate Synchronous Dynamic Random Access Memory
DES Data Encryption Standard
DFT Discrete Fourier Transform
DFU Decoder Functional Units
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DMA Direct Memory Access
DMR Dual Modular Redundancy
DSP Digital Signal Processor
DSS Digital Signature Schemes
DVS Dynamic Vision Sensor
ECC Error Correction Code
EMI Enclave Memory Isolation
ECNNA Event-based CNN Accelerator
EXP EXtension Platform
FCFI Forward-edge Control Flow Integrity
FFT Fast Fourier Transform
FP Floating Point
FPGA Field Programmable Gate Array
FSM Finite State Machine
FIFO First-In-First-Out
FIR Finite Impulse Response
FMA Fused-Multiply-Add
FPMIX FPU for MIXed-precision computing
FPU Floating Point Unit
GEMM GEneral Matrix Multiply
GPIO General Purpose Input/Output
HARQ Hybrid Automatic Repeat Request
HCI Heterogeneous Cluster Interconnect
HDK Hardware Development Kit
HLS High Level Synthesis
HLS-PQC HLS-based Post-Quantum Cryptographic accelerator
HMAC Hash-based Message Authentication Code
IEE Inline Encryption Engine
IEE-RV Inline Encryption Engine RISC-V ISA extension
INET Interconnection NETwork
INTT Inverse Number Theoretic Transform
IP Intellectual Property
ISA Instruction Set Architecture
ISE Instruction Set Extension
IUHF Inverse Universal Hash Function
JOP Jump-Oriented Programming
KEM Key Encapsulation Mechanism
KMAC KECCAK Message Authentication Code
LDPC Low Density Parity Check Decoder
LIF Leaky Integrate and Fire (neuron model)
LSW Least Significant Word
LLR Log Likelihood Ratio
M Machine Mode
MAC Multiply-Accumulate
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MC Memory Controller
MCCU Maximum Contention Control Unit
MDPC Moderate-Density Parity-Check
ML Machine Learning
ML-DSA Module-Lattice-based – Digital Signature Standard
ML-KEM Module-Lattice-based – Key Encapsulation Mechanism
MMIO Memory Mapped Input/Output
MMU Memory Management Unit
MPSoC Multiprocessor System on a Chip
MSW Most Significant Word
NIST National Institute of Standards and Technology
NoC Network on Chip
NR New Radio
NTT Number Theoretic Transform
ONNX Open Neural Network eXchange
OVI Open Vector Interface
PC Program Counter
PCA Parallel Computing Accelerator
PE Processing Engine
PMP Physical Memory Protection
PMU Performance Monitor Unit
POR Power-On Reset
PPA Power, Performance, and Area
PQC Post-Quantum Cryptography
PQC-MA Post-Quantum Crypto Accelerator
PRF Polymorphic Register File
PRINCE Low-latency block cipher
PRNG Pseudorandom Number Generator
QC Quasi-Cyclic
QUARMAv2 Lightweight tweakable block cipher
RDC Request Duration Counter
ReO Rectangle Only
ReRo Rectangle Row
ReTr Rectangle Transposed
RF Radio Frequency
RFOG Register File Organization Table
RoCo Row Column
ROM Read-Only-Memory
ROP Return Oriented Programming
RoT Root-of-Trust
RSA Rivest–Shamir–Adleman
RTL Register Transfer Level
RTPM Run-Time Power Monitoring instrumentation
RV32 32-bit RISC-V processor model
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RVV RISC-V Vector extension
S Supervisor Mode
SafeSU Safety-related Statistics Unit
SafeTI Safety-related Traffic Injector
SCA Shared Correlation Accelerator
SCH SCHeduler
SCMI System Control and Management Interface
SDK Software Development Kit
SDRAM Synchronous Dynamic Random Access Memory
SEC SECured RISC-V processor with cryptographic accelerators
SHA Secure Hash Algorithms
SIMD Single Instruction Multiple Data
SLDU SLiDe Unit
SLH-DSA Stateless Hash-Based Digital Signature Standard
SM Security Monitor
SNN Spiking Neutral Networks
SoA State of the Art
SoC System on a Chip
SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
SSCU Safety and Security Control Unit
TBS Transport Block Sizes
TCCP Time Contract monitoring Co-Processor
TCCP-CO Time Contract monitoring Co-Processor Compiler
TCDM Tightly-Coupled Data Memory
TI Tweak Input
TLUL TileLink Uncached Lightweight bus
TMR Triple Modular Redundancy
TPU Tensor Processing Unit
U User Mode
UE User Equipment
UHF Universal Hash Function
IUHF Inverse Universal Hash Function
VLSI Very Large Scale Integration
VMFPU Vector Multiplier and Floating-Point Unit
VPU Vector Processing Unit
VRF Vector Register File
WCET Worst-Case Execution Time
XCF XtratuM Configuration Files
XIF eXtension InterFace
XNG XtratuM Next Generation
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