
Project: ISOLDE: Customizable Instruction Sets and Open Leveraged Designs
of Embedded RISCV Processors

Reference number: 101112274

Project duration: 01.05.2023 - 30.04.2026

Work Package: WP3: Accelerators and Extensions

Deliverable D3.3

Title Accelerators Prototype Implementation

Type of deliverable Report

Deadline 30.04.2025

Creation Date 31.01.2025

Dissemination Level ISOLDE - public

Authors F. Conti, L. Ghionda - UNIBO (lead)
M. Gautschi, M. Korb, S. Lippuner - ACP
J. Abella, X. Carril, S. Alcaide, F. J. Cazorla, R. Canal - BSC
M.A. Sachian, G. Suciu - BEIA
J. Kaštil - CODA
M. Perotti - ETHZ
M. Munteanu, H. Galmeanu - FotoNation
A. Pus, cas, u, C. B. Ciobanu, M. Gologanu, R. I. Stancu - IMT
A.Galimberti, D.Zoni, W.Fornaciari - POLIMI
T. Terzano, F. Guella, M. Martina, G. Urgese - POLITO
A. Suresh, D. Gigena-Ivanovich - SAL
A. Stan - TUI
A. Sharma Poudel, M. Berekovic, R. Buchty - UzL

Involved grant recipients: Alma Mater Studiorum - Università di Bologna (UNIBO (lead))
ACP Advanced Circuit Pursuit AG (ACP)
Barcelona Supercomputing Center (BSC)
BEIA Consult International SRL (BEIA)
Codasip SRO (CODA)
Eidgenössische Technische Hochschule Zürich (ETHZ)
Fotonation SRL (FotoNation)
Institutul National de Cercetare-Dezvoltare Pentru Microtehnologie
(IMT)
Politecnico di Milano (POLIMI)

Deliverable D3.3 ISOLDE Page 2

Politecnico di Torino (POLITO)
Silicon Austria Labs GmbH (SAL)
Technical University of Iasi (TUI)
Universität zu Lübeck (UzL)

Contacts: Francesco Conti, UNIBO, f.conti@unibo.it
Luigi Ghionda, UNIBO, luigi.ghionda2@unibo.it

Reviewers: Sylvain Girbal, TRT, sylvain.girbal@thalesgroup.com
Jan Andersson, GSL, jan@gaisler.com

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 1

Table of Contents
1 Executive Summary 2

2 Introduction 3
2.1 General Information . 3
2.2 Purpose and Scope . 3

3 Accelerators and Extensions 4
3.1 Accelerator Infrastructure, Memories, Arithmetic Units, Interfaces and Virtualization 4

3.1.1 FPU for Mixed-Precision Computing (FPMIX) – POLIMI 5
3.1.2 Floating-Point Unit for RISC-V (FPU) – UzL 8
3.1.3 Scratchpad - IMT . 11

3.2 SIMD/Vector, AI Accelerator and Tensor Processor Unit Design 15
3.2.1 AI/ML Accelerator (AMA) – FotoNation . 16
3.2.2 CNN Accelerator for an Event-Based Sparse Neural Networks (ECNNA) –

SAL . 20
3.2.3 Parallel Computing Accelerator (PCA) – POLITO 23
3.2.4 Tensor Processing Unit (TPU) – UNIBO . 25
3.2.5 Vector Processing Unit (VPU) – ETHZ . 28
3.2.6 Vector-SIMD Accelerator – IMT . 33
3.2.7 Extension Platform (EXP) – TUI . 40

3.3 Cryptographic and Security Accelerators . 45
3.3.1 Accelerator for Post-Quantum Key Encapsulation Mechanism BIKE (ACC-

BIKE) – POLIMI . 46
3.3.2 HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC) – BSC . 49
3.3.3 Number Theoretic Transform Algorithms for Post Quantum Cryptography

(NTT) – IMT . 52
3.3.4 Post-Quantum Crypto Accelerator (PQC-MA) – SAL 57
3.3.5 Secured RISC-V Processor with Cryptographic Accelerators (SEC) – BEIA 59

3.4 Signal Processing, Neuromorphic and Application-Specific Instruction Set Proces-
sors (ASIPs) . 62
3.4.1 Fast Fourier Transform Algorithms for SIMD and Vector Accelerators (FFT)

– IMT . 63
3.4.2 Low Density Parity Check Encoder (LDPC) – ACP 68
3.4.3 Motor Control Accelerator – CODA . 70
3.4.4 Neuromorphic HW Accelerator – POLITO 73
3.4.5 Shared Correlation Accelerator (SCA) – ACP 76
3.4.6 Turbo Decoder – ACP . 78

4 Conclusion 80

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 2

1 Executive Summary
Deliverable D3.3 presents the prototype implementations of hardware accelerators developed
within Work Package 3 (WP3) of the ISOLDE project. These components target key computa-
tional domains—including AI/ML, cryptography, signal processing, and virtualization—supporting
the project’s goal of building customizable and efficient RISC-V-based platforms for embedded
applications.

The deliverable includes over 20 synthesizable and evaluable IPs, organized across the following
categories:

• Arithmetic infrastructure (e.g., mixed-precision FPUs, scratchpad memories);
• SIMD, vector, tensor, and AI accelerators;
• Post-quantum and classical cryptographic cores;
• Signal processing, neuromorphic units, and ASIPs.

Each IP is described via a standard template (”IP Card”) detailing functionality, architecture, inte-
gration interface, maturity level, and evaluation results (e.g., FPGA/ASIC synthesis, performance,
power).

This deliverable represents a transition from design to validated prototype, supporting downstream
integration with WP5. It forms the technical baseline for final implementation deliverables D3.4
and D3.5.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 3

2 Introduction
2.1 General Information
Work Package 3 (WP3) of the ISOLDE project focuses on the development and prototyping of
hardware modules and architectural extensions designed to enhance the performance and capa-
bilities of RISC-V systems. These developments build upon the foundational cores provided by
WP2 and are intended to support a wide range of application domains, including AI/ML, cryptog-
raphy, signal processing, and embedded control.

This deliverable, D3.3 – Accelerators Prototype Implementation transitions from architectural
design to concrete prototype implementations. The document gathers the results and contribu-
tions of all WP3 partners and tasks, with each extension described in terms of its integration,
synthesis readiness, and evaluation metrics such as area, performance, and power.

Each section of the deliverable is organized by task and domain. The architecture and perfor-
mance evaluations presented here serve both as a record of current progress and as a foundation
for final implementation activities.

2.2 Purpose and Scope
The purpose of this deliverable is to present the prototype implementations of the hardware ac-
celerators and extensions developed under WP3. It documents the technical evolution from initial
architectural concepts to functional and synthesizable hardware IP blocks, many of which have
been evaluated through simulation or FPGA-based prototyping.

This document provides detailed descriptions of each prototype, including:

• Functional goals and supported operations;
• Microarchitectural and integration details;
• ISA extensions, interface protocols, and programmability aspects;
• Evaluation metrics (e.g., area, frequency, power, latency);
• Maturity level and readiness for integration into demonstrator platforms.

This deliverable acts as a reference for both internal and external stakeholders, facilitating the inte-
gration of WP3 outcomes into the ISOLDE use-cases. Each IP includes an IP Card to summarize
all important details about the IP.

The contents of this report lay the groundwork for final implementation deliverables (D3.4 and
D3.5 – due in Month 33), which will further refine and validate the accelerators presented herein.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 4

3 Accelerators and Extensions
3.1 Accelerator Infrastructure, Memories, Arithmetic Units, In-

terfaces and Virtualization
This section presents a set of hardware components that serve as foundational building blocks
for accelerator integration in RISC-V-based systems, developed as part of the activity of Task 3.2
– Accelerator infrastructure, memories, arithmetic units, interfaces and virtualization ac-
tive from M3 to M33 and led by UzL. These include specialized floating-point units, configurable
scratchpad memories, and associated interface logic. The IPs described in this section enable
efficient arithmetic computation, flexible memory access, and support for virtualization and inte-
gration into larger SoC designs.

The following IP blocks are included in this category:

• FPMIX – FPU for Mixed-Precision Computing (POLIMI): A flexible floating-point unit sup-
porting configurable precision at design time, optimized for energy and area efficiency in
mixed-precision workloads.

• FPU – Floating-Point Unit for RISC-V (UzL): An open-source IEEE-754-compliant FPU
supporting multiple precision levels, fault-injection analysis, and integration into RISC-V pro-
cessor cores such as CVA6.

• Scratchpad Memory (IMT): A banked, customizable memory architecture based on Poly-
Mem, supporting advanced memory access schemes (e.g., rectangular, diagonal, trans-
posed) for high-throughput data operations in compute accelerators.

These components form the basis for arithmetic acceleration, memory-efficient data processing,
and extensibility of the ISOLDE computing platform.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 5

3.1.1 FPU for Mixed-Precision Computing (FPMIX) – POLIMI

3.1.1.1 IP Card

Basic Info
IP name FPU for Mixed-Precision Computing (FPMIX)
License Open-source (bfloat16 instances), proprietary closed-source (other instances)
Repository https://github.com/HEAPLab/FPMIX-ISOLDE

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? N
Protocol
Address Map

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? Y (FP format of each operation type)

Programmability Contains programmable cores? N
ISA N.A.

Software

Compiler Requires specialized compiler? N
Compiler repository

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any)
Standalone simulation? Y
(if standalone sim) SW requirements? AMD Vivado
Integration documented / examples?

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (AMD Vivado)
Open-source simulation? N

Evaluation PPA results available? Y

3.1.1.2 Purpose

Our floating-point unit (FPU) implements operations with configurable amounts of precision bits in
their floating-point (FP) arithmetic formats for the operands and result.

The FPMIX FPU is meant to be used in mixed-precision computing scenarios, which can fully
make use of the flexibility in the precision provided by the FPU to achieve different tradeoffs
between accuracy, latency, energy consumption, and area. The formats of FP operations in
FPMIX can be configured at design time, also by leveraging precision tuning approaches.

3.1.1.3 Architecture

The architecture of the FPU includes internal components meant to support the FP addition/subtraction,
multiplication and division operations, comparisons, and conversions between integer and FP for-
mats. The FPU implements floating-point operations whose precision (number of mantissa bits)
can be configured at design time. The precision for each type of operation is independently con-
figurable at design time, i.e., different floating-point operations can have different precision, while
the dynamic range (number of exponent bits) is fixed and the same as the widely used IEEE-754
float32 one for all the supported floating-point formats. In general, each category of operation in

D3.3 ISOLDE - public 30.04.2025

https://github.com/HEAPLab/FPMIX-ISOLDE

Deliverable D3.3 ISOLDE Page 6

the FPU, namely, additions/subtractions, multiplications, divisions, comparisons, and conversions,
can indeed implement a floating-point format with a different number of mantissa bits ranging be-
tween 1 and 23, 8 exponent bits, and 1 sign bit.

Figure 3.1: Architecture of an FPMIX instance with float32 additions/subtractions and bfloat16
multiplications and divisions.

For example, the block diagram depicted in Figure 3.1 refers to an FPU configuration with float32
additions/subtractions and bfloat16 multiplications and divisions. The float32 format has a 1-bit
sign, an 8-bit exponent, and a 23-bit mantissa, whereas the bfloat16 one has a 1-bit sign, an 8-bit
exponent, and a 7-bit mantissa. Values received as inputs and produced as outputs by the FPU
are always encoded in the 32-bit float32 representation (in addition to 32-bit integers, in the case of
float-integer conversions). Operands to lower-precision operations are truncated by discarding the
corresponding number of least significant bits of the mantissa, while their results are conversely
extended by padding the least significant part of the mantissa with zeros. Dedicated rounding
logic is instantiated for each floating-point format used by at least one operation in the FPU.
Instantiating FP operations with lower-precision formats can reduce the area occupation, power
consumption, and latency of the corresponding hardware logic, improving the energy efficiency of
the computing platform. Software precision tuning techniques can aid in exploring trade-offs that
consider the acceptable accuracy loss for the target workloads.

Interface FPMIX can be integrated as the functional unit of a RISC-V CPU core replacing any
existing FPU. Its interface consists of two 32-bit operands and an opcode as its inputs and a 32-bit

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 7

result as its output, in addition to valid and acknowledge 1-bit flags.

The compatibility with the IEEE-754 FP format, albeit possibly with reduced precision, makes it
possible to integrate FPMIX into a CPU that implements the standard RISC-V F extension for
single-precision FP arithmetic, i.e., FPMIX does not require any custom instruction or extension.

3.1.1.4 Evaluation

Prototype implementations of the FPMIX unit have been instantiated with support for the standard
32-bit single-precision IEEE 754 FP format as well as for the 16-bit bfloat16 one. The two formats
share the 1-bit sign and the 8-bit exponent, and the former has a 23-bit mantissa while the latter
has a 7-bit one.

Instances of the FPMIX functional unit were synthesized and implemented, leveraging the AMD
Vivado toolchain, targeting AMD FPGA chips and an operating clock frequency of 50MHz. Simu-
lations carried out in AMD Vivado allow evaluating the functional correctness of the FPU as well
as its performance-accuracy trade-offs when making use of different FP formats for the various
arithmetic operations.

Workloads used to evaluate FPMIX include benchmark applications from the PolyBench/C suite,
that make wide usage of floating-point computations.

The resource utilization ranges from 1948 LUTs, 632 FFs, and 4 DSPs for an FPMIX instance with
all operations supporting the 32-bit IEEE 754 single-precision FP format to 1119 LUTs, 425 FFs,
and 1 DSP for an instance with all operations supporting the 16-bit bfloat16 FP format. These
resource utilization results are collected after implementation on an AMD Artix-7 100 FPGA.

Both instances are configured to take, when integrated into a RISC-V CPU, 5 clock cycles for
additions/subtractions and multiplications and 4 clock cycles for conversions and comparisons,
while they differ in divisions which take 12 clock cycles on the float32 FPMIX configuration and 9
clock cycles on the bfloat16 one.

In addition to saving 42% LUT resources compared to the float32 FPMIX instance, using bfloat16
instance also results in a 4% reduction in terms of energy-delay product on average when execut-
ing a set of applications from the PolyBench/C benchmark suite.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 8

3.1.2 Floating-Point Unit for RISC-V (FPU) – UzL

3.1.2.1 IP Card

Basic Info
IP name Floating-Point Unit for RISC-V (FPU)
License Open-source (SolderPad Hardware License)
Repository https://github.com/openhwgroup/cvfpu

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol
Address Map

Initiator Interface
Protocol
Cached? N
IOMMU? N

Interrupts Interrupts

Microarchitecture

Parametrization Parametric no. units? Y
Parameteric config? Y

Programmability Contains programmable cores? Y
ISA RISC-V

Software

Compiler Requires specialized compiler? Y
Compiler repository

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Bender
Standalone simulation?
(if standalone sim) SW requirements? VCS / Verilator
Integration documented / examples? Example in https://github.com/openhwgroup/cvfpu/blob/develop/docs/README.md

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? N
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? VCS
Open-source simulation? Verilator

Evaluation PPA results available? N

3.1.2.2 Purpose

Floating-Point Units (FPUs) are essential components in modern processors, enabling efficient
computation of floating-point operations required in many application domains. Given the highly
configurable nature of the RISC-V ecosystem, it is desirable that FPUs are similarly adaptable to
a variety of application-specific requirements. The project aims to develop and integrate domain-
specific, configurable FPUs into System-on-Chip (SoC) designs.

3.1.2.3 Architecture

Floating-Point Units are specialized arithmetic units to calculate floating-point arithmetics. In mod-
ern systems, they are highly integrated into the processor pipeline and support different arithmetic
specifications such as IEEE 754 single precision (32 bit) and double precision (64 bit). In addition,
further definitions exist, addressing more specialized applications: for example, bfloat16 is used
and supported by a wide range of Artificial Intelligence (AI) applications.

The RISC-V ecosystem is highly adaptable and configurable. Therefore, it is desirable that the

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 9

Figure 3.2: Official CV32E40P block diagram including FPU

floating-point unit of RISC-V is also configurable and adaptable for different use cases. During the
current runtime of the ISOLDE project, UzL researched and tested a selection of existing open-
source floating-point units that are part the RISC-V ecosystem. A most promising example is
the OpenHW Group’s Floating Point Unit CVFPU [1], which is capable of IEEE 754-2008 single-,
double-, quad-, and half-precision specification. It was hence decided to focus on this FPU for
adaption and integration into the project work, such as, e.g., the automotive demonstrator.

The following description is based on the CV32E40P Core of the OpenHW Group, but matches
most of the existing FPUs. As shown in the CV32E40P core block diagram (Figure 3.2), the
FPU is integrated into the processor pipeline with direct access to required operands. The FPU
interface is designed to be synchronously cleared during system reset.

3.1.2.4 Evaluation

In alignment with Task 4.3, UzL is analysing the sensitivity of the CVFPU to fault-injection attacks.
This contributes to the analysis of the FPU with a focus on aspects such as fault tolerance and
overall reliability. The FPU is implemented in accordance with the IEEE 754 standard for single-,
double- and quad-precision floating-point arithmetic. It supports a comprehensive set of opera-
tions, including addition, subtraction, multiplication, division, square root, and fused multiply-add
(FMADD). We opted for single-precision arithmetic for the fault analysis. The FPU is synthesized
and compiled using Synopsys VCS [2], with fault injection experiments conducted via Synopsys
Z01X [3]. While the FPU is designed to be integrated with the CVA6 processor core, the fault
injection campaigns are carried out on the FPU in isolation, without binding it to the full processor
pipeline. This allows for more controlled fault analysis and data collection. The golden reference
outputs are generated using Python, and the results of the FPU injected with the fault are com-

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 10

pared against these references to evaluate the correctness and robustness of the implementation
under the fault conditions.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 11

3.1.3 Scratchpad - IMT

3.1.3.1 IP Card

Basic Info
IP name Scracthpad memory
License Open-source (GPLv3.0)
Repository https://gitlab.com/catalin.ciobanu/PolyMem System Verilog

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? N
Protocol Custom protocol
Address Map N/A

Initiator Interface
Protocol Custom protocol
Cached? N
IOMMU? N

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. units? Y (number of data in parallel)
Parameteric config? Y

Programmability Contains programmable cores? N
ISA N

Software

Compiler Requires specialized compiler? N
Compiler repository N/A

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Bender.yml
Standalone simulation? Y
(if standalone sim) SW requirements? QuestaSim
Integration documented / examples? N

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y (generated by Bender)
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? Y

3.1.3.2 Purpose

A scratchpad memory is a fast memory, similar to a cache, but managed by the user and has
its own address space. The user has the responsibility to manage coherency between the main
memory and the scratchpad.

Our scratchpad memory is designed for matrix accesses. The access mode is optimized for 2D
addresses. The user specifies the coordinates (row and column) for the scratchpad accesses.
Furthermore, the memory allows access of multiple data elements in parallel. This parameter is
configurable at design time.

The data accessed in parallel can be on the same row, same column, main diagonal, secondary
diagonal or could be a small matrix. For our 2D scratchpad, the user may configure the number
of read ports.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 12

AGU

X Y access_type

Module Assignment Function

Customized Address Function/Coeficients

X Y access_type

Read/Write Address Shuffle

M00 M01 M03M02

M10 M11 M13M12

Read/Write Data Shuffle

Data

Addresses

R
ea

d
D

el
ay

Figure 3.3: High level architecture of the scratchpad memory [5]

3.1.3.3 Architecture

The Scratchpad Memory is based on PolyMem [4] and uses the Memory Access Schemes origi-
nally used in the Polymorphic Register File [5, 6].

The main components of the Scratchpad Memory are the memory banks modules and the logic
that computes the addresses for every bank based on the selected Memory Access Scheme. The
Memory Access Schemes supported [5] are Rectangle Only (ReO) [6], Rectangle Row (ReRo),
Rectangle Column (ReCo), Row Column (RoCo) and Rectangle Transposed (ReTr) [5]. The Rect-
angle Only scheme supports accessing rectangles. ReRo, ReCo, RoCo and ReTr support a min-
imum of two access patterns and are called multi-view memory schemes. The ReRo scheme
supports memory accesses shaped as rectangles, rows (multiple elements from the same line),
main and secondary diagonals. ReCo supports rectangles, columns, and main and secondary
diagonals. The ReTr scheme allows access to rectangles and transposed rectangles. The RoCo
scheme allows accesses to rows, columns and aligned rectangles [5].

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 13

The internal structure of the Scratchpad Memory is presented in Figure 3.3. The data is is stored
in a matrix of p×q memory modules and has a capacity of N×M words. The number of data
elements which can be accessed in each clock cycle is equal to p·q, which will be referred to as
the number of lanes in the rest of this document. In Figure 3.3 the scratchpad has 8 lanes, p=2
and q=4 [5].

The Scratchpad module receives the start 2D index and the memory access scheme. Based on
them, it generates the addresses for each individual memory bank. The data is read from the
memory banks and finally, Data Shuffle rearranges the data to be passed to the user.

read0
read0_x[log2_N-1:0]
read0_y[log2_M-1:0]

read0_access_type[2:0]

memory_scheme[2:0]

write
write_x[log2_N-1:0]
write_y[log2_M-1:0]

write_access_type[2:0]

Scratchpad Memory

data0_out[sram_with-1:0]
[n_lanes-1:0]

data_in[sram_with-1:0]
[n_lanes-1:0]

read1
read1_x[log2_N-1:0]
read1_y[log2_M-1:0]

read1_access_type[2:0]

data1_out[sram_with-1:0]
[n_lanes-1:0]

read2
read2_x[log2_N-1:0]
read2_y[log2_M-1:0]

read2_access_type[2:0]

data2_out[sram_with-1:0]
[n_lanes-1:0]

Figure 3.4: Scratchpad interfaces [5]

Interfaces: The default Scratchpad interfaces includes control signals and multiple lanes to write
and read data from this memory. Also, the Scratchpad Memory allows multiple parallel reading
ports, obtained by duplication of memory modules. The full interfaces are presented in Figure 3.4.

The control signals are the 2D coordinates for writing and reading, memory scheme and the

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 14

access type. The access type is one of the six supported: i) rectangle; ii) row; iii) column; iv) main
diagonal; v) second diagonal; and vi) transposed rectangle. There are multiple interfaces to write
or read data from Scratchpad. The number of read/write of parallel elements is called the number
of lanes and is a parameter set at design time.

3.1.3.4 Evaluation

For the scratchpad we analyzed the resource utilization on a Xilinx VCU128 board, resources
summary in Table 3.1. The results are in Table 3.2. The scratchpad is configured with two read
ports and one write port. The element width is 32 bits and memory size is 1024 × 1024 elements
(N=M=1024), resulting in 4MB of usable data. The internal organization scheme used in this test
is RoCo. We set the synthesis frequency at 100MHz, the period is 10ns. Based on the worst
slack, we computed the maximum frequency with the formula Fmax = 1000/(10−Worst Slack).

System Logic Cells (K) 2852
HBM DRAM (GB) 8
DSP Slices 9024
Block RAM (Mb) 70.9
UltraRAM (Mb) 270

Table 3.1: VCU128 resources, from [7]

We analyzed the impact of URAM usage on the maximum frequency. Another parameter that
we analyzed was the number of lanes. The bandwidth is directly proportional with the number
of lanes and the clock frequency. The number of lanes impacts the resource usage because the
Scratchpad Shuffle is a fully connected crossbar. Increasing the number of lanes increases the
number of LUTs. The increase in the number of LUTs will decrease the maximum frequency.

Lanes URAM LUT FF BRAM URAM Max F [MHz] Bandwidth [GB/s]
4 YES 2426 72 0 512 202.06 3.23
8 YES 2554 94 0 512 199.32 6.38
16 YES 20976 148 0 512 194.97 12.48
32 YES 38937 553 0 512 162.28 20.77
64 YES 76481 2026 0 512 113.90 29.16
4 NO 1338 48 1856 0 215.66 3.45
8 NO 2240 93 1856 0 214.68 6.87
16 NO 18736 187 1856 0 211.06 13.51
32 NO 39686 723 1856 0 194.17 24.85
64 NO 76481 2026 1856 0 118.46 30.32

Table 3.2: Scratchpad utilization on VCU128. All the results are after synthesis.

As expected, the bandwidth is increased with the number of lanes. Increasing the number of lanes
reduces the maximum frequency due to the complexity of the interconnect.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 15

3.2 SIMD/Vector, AI Accelerator and Tensor Processor Unit De-
sign

This section covers a set of hardware accelerators focused on parallel and high-throughput com-
putation, particularly targeting AI/ML workloads, tensor operations, and vectorized data process-
ing, developed as part of the activity of Task 3.4 – SIMD/Vector, AI accelerator and tensor
processor unit design, led by FotoNation. These IPs leverage SIMD and vector architectures
as well as tightly integrated processing units designed for inference and training of neural net-
works.

The IPs included in this category are:

• AMA – AI/ML Accelerator (FotoNation): A proprietary accelerator capable of executing
complete neural network programs with FP16 support, high MAC utilization, and scalable
configurations (up to 2048 MAC units).

• ECNNA – CNN Accelerator for Event-Based Sparse Neural Networks (SAL): An event-
driven sparse CNN accelerator designed around a RISC-V core and CAM memory, opti-
mized for sparse data such as that from event-based sensors.

• PCA – Parallel Computing Accelerator (POLITO): A reconfigurable systolic array with
support for approximate arithmetic, designed to accelerate convolutional layers and general
matrix operations.

• TPU – Tensor Processing Unit (UNIBO): A heterogeneous PULP-based processing clus-
ter featuring multiple RISC-V DSP cores and dedicated HWPEs (e.g., RedMulE TPE), aimed
at GEMM and tensor workloads.

• VPU – Vector Processing Unit (ETHZ): A high-performance, open-source vector unit com-
pliant with RISC-V V 1.0, supporting multi-precision computation, predicated execution, and
tight integration with the CVA6 core.

• SIMD/Vector Accelerator (IMT): A RISC-V-coupled matrix accelerator with software-defined
2D registers and a polymorphic scratchpad memory, enabling efficient vector and matrix op-
erations using custom ISA extensions.

These accelerators address the computational needs of AI/ML and signal processing applications
by providing modular, scalable, and power-efficient hardware components tailored for integration
in ISOLDE’s heterogeneous platforms.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 16

3.2.1 AI/ML Accelerator (AMA) – FotoNation

3.2.1.1 IP Card

Basic Info
IP name AI/ML Accelerator (AMA)
License Closed-source, proprietary
Repository N/A

Architecture

Clock
Number of clock domains 2
Synchronous with system 1
Clock generated internally 0

Ctrl Interface

ISA extension? No
Memory mapped? Yes
Protocol APB
Address Map -

Memory Interface Protocol Standard SRAM
Hierarchy Level Top level

Initiator Interface
Protocol AXI4
Cached? No
IOMMU? No

Interrupts Interrupts Yes

Microarchitecture

Parametrization Parametric no. units? Number of MACS: 256, 512, 1024, 2048
Parameteric config? No

Programmability Contains programmable cores? No
ISA Proprietary

Software

Compiler Requires specialized compiler? Yes
Compiler repository N/A

Hardware Abstraction Layer Not necessary The supplied driver will manage the interaction with the Accelerator

High-level API
Is there a high-level API/SDK? N/A
SDK repository N/A
Is there a domain-specific compiler? Yes, under development

Integration

IP Distribution

Manifest type (if any) -
Standalone simulation? Yes
(if standalone sim) SW requirements? Vivado
Integration documented / examples? TBD

Synthesis
Is the IP synthesizable? Yes
FPGA synthesis scripts/example available? Yes, proprietary
ASIC synthesis scripts/example available? Yes, proprietary

Simulation Closed-source simulation? Yes
Open-source simulation? No

Evaluation PPA results available? Estimation

3.2.1.2 Purpose

The main purpose of the AI/ML Accelerator is to accelerate the processing of complex AI mod-
els/algorithms such as Convolutional Neural Networks (CNN) or Large Language Models (LLM)
to be efficiently executed on edge computing devices. The accelerator can process large pro-
grams that consist of specific instructions. Each instruction corresponds to, and accelerates a
common neural network’s layers/operations. Most common operations are supported, including
Convolution, Pooling, Element Wise Add and Mul, Matrix Multiplication.

The Accelerator can operate almost completely autonomous or close together with an RISC-V
CPU; due to the high data bandwidth required to feed the parallel hardware which can process up
to 2048 multiply–accumulate (MAC) or 4096 operations per clock cycle, the autonomous mode is
preferred as too much interaction with the CPU can slow down the processing.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 17

Figure 3.5: AI/ML Accelerator block diagram and associated system architecture.

3.2.1.3 Architecture

The block diagram of the AI/ML accelerator is provided in Figure 3.5; it shows all main component
modules and interfaces. The computing architecture is centered around the Accelerator Core
that processes the operands stored into the Memory Banks. Parallelism is achieved by storing
operands in individual memories, thus achieving a processing speed in the range of 256 – 2048
multiply–accumulate (MAC) operations per clock cycle.

The Memory Banks’ size and number are configurable to suit various applications. However, in all
configurations it supports the same high data transfer bandwidth that is able to avoid data starving
and keep the MAC utilization close to 100% most of the time for the operations that can support
it.

The AI/ML accelerator can be easily integrated into any system. All interfaces are standard AXI4
interfaces, 128-bit wide. Although most of the processing is performed by the accelerator, the
RISC-V subsystem jointly interacts with the accelerator from the initialization to the results gath-
ering phase. The RISC-V processor configures, starts, and monitors the program execution by
the accelerator.

Another important function of the RISC-V processor is to provide flow control for complex pro-
grams that need complex loops and conditional branching. The RISC-V core can also access the
accelerator cache to perform rare operations that are not supported by the accelerator core. This
increases the flexibility of the system, making it possible to implement any kind of processing, but
it should be taken into consideration the fact that using the RISC-V processor for data processing

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 18

is several orders of magnitude slower in processing performance.

Another very important function provided by the RISC-V subsystem is to assist the debugging of
the accelerator programs. The RISC-V can take control of the accelerator by sending instructions
one by one, stop the execution after each instruction and analyze the output produced by each
instruction.

Processing Flow: A typical processing with the AI/ML Accelerator has the following steps:

• Compilation of the AI/ML model and loading of the resulting program and parameters in the
system memory;

• Preparation of the input maps/data in the system memory;
• Powering-up of the AI/ML power island – if it is not already on;
• Starting of the AI/ML clock – if it is not already on;
• Configuring the AI/ML registers;
• Setting of the enable configuration bit for the AI/ML Accelerator;
• Configuring of the Program DMA and starting the DMA transfer of the AI/ML accelerator

program;
• The AI/ML accelerator starts fetching the program and executes the instructions:
• The Data Read/Write DMA transfers are controlled from the accelerator program;
• The CPU can monitor the progress of the program using optional interrupts and/or status

registers;
• The AI/ML Accelerator asserts the “done” interrupt when the program is completed;
• The CPU can post/process or check the results;
• If the idle status bit is set and if the accelerator is not needed again, the AI/ML clock can be

gated;
• Once the clock is gated, the AI/ML power island can be powered down.

Link between requirements and implementation:

• AIACC-01. Support for IEEE754 FP16
◦ The entire data path is implemented to use standard FP16 arithmetic modules;
◦ Data quantized in smaller resolution (int8, uint8, fp8) can be read from the system

memory.
• AIACC-02. Support for NN operations: Convolution, Pooling, Activation Functions

◦ The pipeline implementation natively supports these functions – there are dedicated
high level instruction for each of the above functions;

◦ The functionality was verified against standard PyTorch functions.
• AIACC-03a, c. Standard interfaces (AXI) for System Integration

◦ The accelerator only uses standard AXI interfaces to access the system memory for
read (program, data) and write (data);

◦ Verified with standard protocol checkers (VIP – Verification IP).
• AIACC-03b. APB interface to registers

◦ All configuration registers are accessed using a standard APB interface;
◦ Verified with standard protocol checkers (VIP – Verification IP).

• IACC-04a, b, c. Integration with CPU (RISC-V)
◦ The Accelerator was validated on FPGA, as part of a system with CPU;

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 19

◦ All CPU interaction is performed via standard buses (AXI, APB, interrupt lines), making
it very easy to integrate with any CPU (Including RISC-V) that has these interfaces.

• IACC-05. Computational efficiency
◦ Rigorous testing in simulation and FPGA was performed;
◦ RESNET18 neural network on FPGA works at 10 fps and achieves 90% utilization of

the available MAC circuits.
• IACC-06. Scalability

◦ Implemented by using a parameter for number of operations: 512, 1k, 2k, 4k
◦ All values are fully covered by simulation verification;
◦ On FPGA up to 2k operations were verified. 4k operations do not fit on our FPGA

platform’s device.

3.2.1.4 Evaluation

Performance: Once the RTL code of the accelerator system was completed and passing most
simulation regression tests, we prototyped the entire system on an FPGA platform. The FPGA
platform is an essential part in the verification/validation process. It is used to run a large variety
of instructions and programs, much larger and more complex than what is practically possible in
simulation.

The FPGA board used is AMD Virtex™ UltraScale+™ FPGA VCU118 The largest complete system
that could fit on this board is configured with 512 MAC (1k operations) per clock cycle. Due to the
complexity of the design that does not map very efficiently on an FPGA device, the FPGA Demo
reached a maximum clock frequency of 50 MHz. Although it looks low, this frequency is enough
for running real time demos and to evaluate the performance of common neural networks.

One neural network that was evaluated is ResNet18. On the FPGA platform it reached a per-
formance of 10 fps at input resolution of 224 x 224 pixels. Remarkable is the very high MAC
utilization that reached over 90% for this network.

ASIC Synthesis: As the main target of this accelerator is the ASIC implementation, the RTL
code was also synthesized for ASIC. The technology node used for ASIC synthesis is 22 nm
(slow corner). In this technology the accelerator system reaches a maximum target frequency of
600 MHz with no timing violations.

The critical path was identified inside the Configurable Parallel ALU. Initial ASIC synthesis tests
indicated a lower maximum operating frequency. However, subsequent RTL optimization of the
critical paths increased the operating frequency to 600MHz.

The total area of the accelerator system occupied by the logic gates is:

◦ 256 MACs configuration: 0.56 mm2 = 2895K gates
◦ 2048 MACs configuration: 1.47mm2 = 7346K gates

The memory size used by the memory banks for the typical case is 2048 Kbytes. In 22nm tech-
nology this occupies 2.63 mm2. In terms of energy consumption, for the same technology we
determined a value of 0.44 pJ per single MAC operation. For a 256 MAC accelerator, running at
500 MHz, with 100% utilization of the MACs the total power consumption is 86 mW, of which 56
mW is consumed by the logic and 30 mW by the memory banks.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 20

3.2.2 CNN Accelerator for an Event-Based Sparse Neural Networks (EC-
NNA) – SAL

3.2.2.1 IP Card

Basic Info
IP name Event-Based Sparse NN Processing Unit
License Closed-source
Repository Not yet released

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4 64b
Address Map Base + 0x0 - 0x1000000

Initiator Interface
Protocol AXI4 64b
Cached? N
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. units? Y
Parameteric config? Y

Programmability Contains programmable cores? Y
ISA RV32I

Software

Compiler Requires specialized compiler? Y
Compiler repository standard toolchain for cv32e40p

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? Y
SDK repository Y (Not yet released)
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? Y
(if standalone sim) SW requirements? Python + QuestaSim
Integration documented / examples? Y (Not yet released)

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? Y

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? Work in progress

Evaluation PPA results available? Work in progress

3.2.2.2 Purpose

The Event-Based CNN Processing Unit (ECNNPU) (Fig. 3.6) is a CAM-based hardware accel-
erator designed to efficiently perform convolution and pooling operations on highly sparse data,
such as event matrix representations.

3.2.2.3 Architecture

The accelerator is built around the cv32e40p—a 4-stage in-order 32-bit RISC-V core—that inter-
faces via an internal AMBA AHB-Lite bus with a subsystem comprising two CAM memories, each
paired with a dedicated RAM partition for storing input and output feature maps in COO format.
This subsystem also includes a coordinates processing unit, which operates on the sparse matrix
coordinates, and an array of processing elements that handle feature computations.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 21

cv32e40p

Coordinates
CAM 0

Coordinates
processing

unit

PE-Array
Sparse Conv PU

Activation Functions PU

MaxPool PU

Sparse2Dense
DMA

Firmware
RAM

Config
Registers

Coordinates
CAM 1

FM-RAM 0

FM-RAM 1

AXI4 Crossbar

AHB Lite subordinate

AXI4 Manager

AH
B-

Li
te

 In
te

rn
al

 B
us

Event-Based Sparse NN Processing Unit

Figure 3.6: SAL Events CNN Accelerator.

Coordinates processing unit: It is a key element in the processing of convolution and maxpool
operations. It is fully parametrizable and utilizing the input size, kernel size, stride, and padding
signals, it calculates all necessary coordinates for processing. The unit is divided into two sub-
modules: the OC Phase and the IC Phase. The OC Phase receives an input coordinate from the
sparse matrix and computes all corresponding output coordinates affected by that input according
to the specified layer parameters. These output coordinates are temporarily stored in an internal
FIFO buffer. Subsequently, the IC Phase retrieves the stored output coordinates and computes
all pairs of input and kernel coordinates required to generate each output coordinate.

PE Array: The PE Array is responsible for executing all feature-related computations. It com-
prises N parametrizable multiply-and-accumulate (MAC) units connected to a serial adder. This
configuration supports two primary operation modes: the MAC units can operate independently on
different feature maps, or they can collaboratively contribute to a single feature map by combining
their outputs through the serial adder. The results are then fed into an activation function unit that
performs rounding operations and supports both ReLU and Leaky-ReLU activations. Additionally,
the block includes an array of comparators to facilitate MaxPool operations.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 22

Sparse2Dense DMA: The Sparse2Dense DMA is a custom component that enables the ECN-
NPU to interface seamlessly with other accelerators and peripherals. It translates matrices stored
in the shared main system memory in a standard dense format into the internal CAM memory
format required by the accelerator. Data transmission is handled through an AXI4 manager inter-
face, which allows the DMA to leverage the full capabilities of the AXI bus for efficient data access.
Additionally, a set of configuration registers is provided to define the accessible memory address
range for this DMA, through the AHB-Lite peripheral interface.

Interfaces: The accelerator has two interfaces to interact with the main system.

• AXI4 manager: This interface facilitates the exchange of sparse matrices stored in the main
shared memory in dense format with the internal CAM memories that hold data in COO
format. A custom DMA engine (Sparse2Dense DMA in Fig. 3.6) performs the conversion.

• AHB-Lite peripheral: Designed for configuration, this interface enables firmware deploy-
ment for the cv32e40p core, layer parameter configuration, and specification of the memory
address range accessed by the Sparse2Dense unit.

3.2.2.4 Evaluation

The accelerator has been taped out as a standalone ASIC using 65nm TSMC technology and
has been successfully tested. The chip occupies a total die area of 9 mm2, of which approxi-
mately 1.6 mm2 is dedicated to the core. It is currently undergoing characterization to assess
power efficiency across various layer configurations and operating frequencies. Preliminary mea-
surements indicate a power consumption of 26 mW and an energy efficiency of 0.14 TMACs/W
at 50 MHz and 1.8 V. The results also demonstrate that the accelerator performs efficiently un-
der highly sparse conditions (approximately 90 % sparsity), making it particularly well-suited for
computing the initial layers of a sparse CNN, especially in applications that utilize high-resolution
event-based cameras in low-activity scenarios. Once the final evaluations are complete, a journal
publication is planned.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 23

3.2.3 Parallel Computing Accelerator (PCA) – POLITO

3.2.3.1 IP Card

Basic Info
IP name Parallel Computing Accelerator
License Open-source (SolderPad Hardware License v2.1)
Repository https://github.com/vlsi-lab/SAURIA-CHESHIRE/

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4 64b (SRAMs) / AXI4 Lite (Registers)
Address Map Base + 0x40000000 - 0x00038000

Systolic Array
Approach Output Stationary
On-chip SRAMs? Y
Operations Convolutions / GEMMs

Interrupts Interrupts? Y

Microarchitecture

Parametrization Parametric Systolic Array shape? Y
Parametric SRAMs? Y
Configurable PEs? Y, 256 approximation levels

Programmability Contains programmable cores? N

Software

Hardware Abstraction Layer
Are there macros for direct register access? Y
Are there HAL functions? Y

Integration

IP Distribution

Standalone simulation? Y
SW requirements? Python + QuestaSim
Integration documented / examples? Examples in https://github.com/vlsi-lab/SAURIA-CHESHIRE/tree/main/sw/src

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? N

3.2.3.2 Purpose

Modern high-performance applications, such as machine learning inference, scientific computa-
tion, and signal processing, are increasingly characterized by substantial data-level parallelism,
driving the need for specialized hardware accelerators capable of efficiently exploiting this paral-
lelism. As conventional scaling slows and energy efficiency becomes paramount, systolic array-
based accelerators have emerged as an effective solution for dense linear algebra operations as
well as multiply-accumulate dominated workloads.

Moreover, neural networks while being computationally intensive, have shown high resilience to
approximate arithmetic being perfect candidates to achive energy reduction by exploiting operand
precision scaling and per-layer approximation levels, allowing fine-grained control over the trade-
offs between computational accuracy, energy consumption, and throughput.

In the next section we introduce the Parallel Computing Accelerator (PCA) a flexible accelerator
ready for integration into RISC-V-based system-on-chip (SoC) platforms.

3.2.3.3 Architecture

The PCA is a loosely coupled, systolic architecture with AXI interface to be connected to a CVA6-
based system. The main application it has been designed for is convolutional layers acceleration

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 24

in artificial intelligence applications, with particular focus on multiply and multiply-accumulate in-
tensive kernels.

Figure 3.7: Parallel Computing Accelerator architecture.

Figure 3.7 shows the inside architecture by highlighting the configurable systolic array structure
[8]. The array can be indeed customized thanks to its parametric architecture; indeed, it can be
configured to use different systolic array shapes and sizes, by also adapting the local memory
(scratchpad) amount. Each processing element (PE) is designed to perform a multiplication and
an addition, and the architecture has been extended by the means of proper configuration in-
formation and logic with a run-time reconfigurable signed multiplier, including 256 approximation
levels and the possibility to select the operands’ precision [9].

The accelerator is memory mapped and equipped with 29 configuration registers and 3 local
scratchpads to store the data required for the processing. The configuration registers permit
setting several parameters, including the array topology (shape and interconnection between the
PEs) as well as multiplication approximation and operands precision.

3.2.3.4 Evaluation

PCA architecture has been integrated in a CVA6 based system and preliminary tests on FPGA
show that configuration and simple operations work correctly.

A preliminary evaluation result on 65-nm technology showed that the accelerator can be correctly
implemented at 250 MHz, achieving an average power saving of around 38% in the most approx-
imate configuration compared to an 8x8 signed exact multiplier.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 25

3.2.4 Tensor Processing Unit (TPU) – UNIBO

3.2.4.1 IP Card

Basic Info
IP name Tensor Processing Unit
License Open-source (SolderPad Hardware License v0.51)
Repository https://github.com/pulp-platform/pulp cluster/tree/lg/isolde

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4 64b (async)
Address Map Base + 0x0 - 0x1000000 (L1 @ Base + 0x0 - 0x40000)

Initiator Interface
Protocol AXI4 64b (async)
Cached? N
IOMMU? N

Interrupts Interrupts Asynchronous cluster events

Microarchitecture

Parametrization Parametric no. units? Y (default 8 cores)
Parameteric config? Y

Programmability Contains programmable cores? Y
ISA RISC-V (RV32IMCFXpulp2)

Software

Compiler Requires specialized compiler? Y
Compiler repository https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? Y
SDK repository https://github.com/pulp-platform/pulp-runtime/tree/lg-isolde
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Bender.yml
Standalone simulation? Y
(if standalone sim) SW requirements? Python (see requirements.txt) + QuestaSim
Integration documented / examples? Example in https://github.com/pulp-platform/astral/tree/lg/isolde

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? https://arxiv.org/abs/2412.06321 (preliminary)

3.2.4.2 Purpose

The ISOLDE Tensor Processing Unit (TPU) is intended as a flexible, easy-to-integrate, and high-
performance block that can be parametrized to perform tensor-heavy operations in edge AI sys-
tems to accelerate the execution of modern DNNs such as Convolutional Neural Networks, Recur-
rent Neural Networks, and Transformers. It focuses on relatively high precision (BF16) arithmetic
performed either by a set of general-purpose DSP processors or by two embedded high perfor-
mance engines: a Tensor Processing Engine (TPE) or an Activation Engine (AE). The TPE is
designed as a parametric systolic array based on the RedMulE architecture.

3.2.4.3 Architecture

The ISOLDE Tensor Processing Unit (TPU) is shown in Fig. 3.8, designed to enhance onboard
machine learning and AI performance. Based on the open-source PULP cluster in heterogeneous
configuration, it features 8 RISC-V digital signal processing cores based on the CV32E40P archi-
tecture (RV32IMCFXpulpV2, in-order, four-stage pipeline) with dedicated FPUs, a hierarchical
instruction cache, and a DMA controller for efficient data transfer across the memory hierarchy.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 26

Heterogeneous Cluster Interconnect (HCI)

AXI from/to
Host Processor

DMAC
CV32

#0
I$

CV32
#7

I$

Crossbar Peripherals

AXI Crossbar

FPU FPU

iCache

Multibank Tightly-Coupled Data Memory

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8 Bank 15...

Cluster Peripherals
Event Unit

Cluster Control
Unit

iCache Control
Unit

Timers

Tensor Processing Unit

...

Multiplexer
HWPE Subsystem

TPE
RedMulE

AE
SoftEx

Figure 3.8: UNIBO Tensor Processing Unit architecture.

The TPU includes a 128KiB L1 Tightly-Coupled Data Memory (TCDM), organized into 32 banks,
each with a 32-bit data width, shared among all the available computing entities. A low-latency,
high-bandwidth heterogeneous cluster interconnect (HCI) enables the DSP cores to share the
TCDM with domain-specific Hardware Processing Engines (HWPEs), enhancing performance for
specific applications. The TPU includes two HWPEs: a highly parametric Tensor Processing En-
gine (TPE), based on the RedMulE architecture, accelerating 16-bit (FP16/BFloat16) and 8-bit
(E4M3/E5M2) floating-point GEMM and other matrix operations (GEMM-Ops) [10]; and an Acti-
vation Engine (AE) based on the SoftEx architecture [11].

Tensor Processing Engine architecture: The TPE builds upon RedMulE https://github.

com/pulp-platform/redmule, a domain-specific processor tailored to accelerate GEMM and
GEMM-like computations, which is shown in Fig. 3.9.

At the heart of the TPE lies the Datapath, a two-dimensional array of Computing Elements (CEs)
arranged in a systolic structure with L rows and H columns. Each row comprises H CEs con-
nected in cascade, where each CE computes an intermediate result and forwards it to the next in
a systolic manner. The final CE in each row sends its output back to the first CE in that same row,
enabling accumulation. The Datapath of the TPE features a configurable number of internal CEs
and pipeline stages (P) that can be tuned at design time. To reduce active power consumption,
the TPE employs fine-grained clock gating that disables unused sections (rows or columns) of
the Datapath. Rows that are not engaged during the computation of leftover data can be deac-
tivated dynamically. Similarly, column-level clock gating is applied, allowing RedMulE to disable
specific columns based on the current computation phase. Each CE in the Datapath is split into
two pipeline stages, dedicated respectively to the mapping (usually multiplication) and reduction
(typically summation) operations required by the ongoing GEMM-like task.

D3.3 ISOLDE - public 30.04.2025

https://github.com/pulp-platform/redmule
https://github.com/pulp-platform/redmule

Deliverable D3.3 ISOLDE Page 27

H
W

PE

C
tr

l

288b
HWPE Streamer

C
 b

uf
fe

r

CE CE CE CE

A buffer

CE CE CE CE

CE CE CE CE

B buffer
BA C (out)

C
 (i

n)

Figure 3.9: Tensor Processing Engine based on RedMulE.

To supply the Datapath with data, the TPE integrates a module called the Streamer, designed
in line with the HWPE architectural philosophy1. The Streamer is a dedicated memory interface
that links RedMulE to the TPU cluster interconnect via a single wide data port, with a parame-
terizable width (as a multiple of 32 bits), used for both loading and storing data. Incoming data
from the interconnect is distributed by a single-input/multi-output dispatcher that enables only the
appropriate output channel; in parallel, each output channel relays the interconnect stream to the
accelerator’s input. During store operations, output streams generated by RedMulE are routed
back to the interconnect.

The TPE’s control logic is split into two submodules: the Scheduler and the Controller. Together,
they include a register file accessible by the cores to configure the accelerator, and they coordinate
to manage its execution flow.

3.2.4.4 Evaluation

We targeted GlobalFoundries GF12LP+ 12nm technology to evaluate the TPU in terms of area
and performance, using Synopsys Design Compiler for synthesis and Cadence Innovus for place-
and-route with a frequency target of 500 MHz. We opted for a TPE with L=12×H=4 8-to-16-bit
Fused-Multiply-Add units as CEs; and an Activation Engine with 16 lanes. The TPU occupies
0.54mm2 of silicon, of which the TCDM is 42%, the 8 RISC-V cores are 15% (plus another 11%
for the instruction caches), the TPE is 14%, and the AE is 5.5%. The TPU achieves up to 90
GOPS on computation dominated by the TPE.

1https://hwpe-doc.rtfd.io

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 28

3.2.5 Vector Processing Unit (VPU) – ETHZ

3.2.5.1 IP Card

Basic Info
IP name Vector Processing Unit
License Open-source (SolderPad Hardware License v0.51)
Repository https://github.com/pulp-platform/ara

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Main Core RISC-V Core CVA6
Cache Write Policy Write-Through

Ctrl

ISA extension? RISC-V V 1.0
Memory mapped? N
Interface Protocol Custom accelerator, MMU, coherence intf. (sync)

Memory Interface Protocol AXI4 (L×32) bit (sync) – L = Number of vector lanes
Hierarchy Level L2 (CVA6’s L1 is bypassed)

Interrupts Interrupts Same as for CVA6

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? Y (Number of Vector Lanes (L), Vector Register Length (VLEN))

Programmability Contains programmable cores? Y (CVA6)
ISA RISC-V (RV64GCV)

Software
Compiler Requires specialized compiler? N (RISC-V compiler compatible with RISC-V V 1.0 is enough)

High-level API Is there a high-level API/SDK? Y - C intrinsics (https://github.com/riscv-non-isa/rvv-intrinsic-doc/tree/main)

Integration

IP Distribution

Manifest type (if any) Bender.yml
Standalone simulation? Y
(if standalone sim) SW requirements? QuestaSim or Verilator (see README.md)
Integration documented / examples? Y (see README.md)

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Work in progress
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? Y (Verilator)

Evaluation PPA results available? https://arxiv.org/pdf/2311.07493 (preliminary)

3.2.5.2 Purpose

Modern compute-intensive applications—in particular, machine learning, scientific simulation, and
signal processing—exhibit high degrees of data-level parallelism that cannot be efficiently ex-
ploited by conventional scalar cores alone. As transistor scaling trends decelerate, architects have
to maximize throughput and energy efficiency through architectural innovations and streamlining.
One promising way to boost processing speed and minimize power is through data-level paral-
lelism exploitation. Vector processors, by applying the same operation to multiple data elements
in a single instruction, offer a proven mechanism for leveraging data parallelism while amortizing
control overhead and maximizing utilization of functional units. Moreover, vector processors sup-
port runtime-programmable vector lengths, offering vector-length agnostic programming support.

Beyond raw throughput, emerging workloads demand variable numeric precision: deep neural
networks often tolerate reduced precision without sacrificing accuracy, whereas certain scientific
kernels require full or extended precision to maintain numerical stability. A vector unit endowed
with multi-precision capabilities can dynamically adapt its datapath effective width to the precision
requirements of each kernel, thus achieving an optimal trade-off between performance, energy
consumption, and result precision. For example, the vector unit can either process N 64-bit data

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 29

elements or eight 8-bit data elements in parallel. Such flexibility is critical for heterogeneous
systems that have to support applications requiring a broad range of precisions.

In this work, we present the design and integration of a RISC-V V 1.0 vector processing unit featur-
ing multi-precision capabilities tightly coupled to the CVA6 scalar core. The resulting architecture
aims to deliver a scalable, energy-efficient platform that transparently accelerates data-parallel
kernels across precision domains while preserving full compatibility with the standard RISC-V
ISA and software ecosystem.

3.2.5.3 Architecture

The architecture of the RISC-V V 1.0 multi-precision vector processing unit (VPU) is represented
in Figure 3.10.

VPU

Figure 3.10: Detailed ETHZ Vector Processing Unit architecture.

The VPU is tightly coupled with an RV64GC scalar core and extends its ISA to RV64GCV. It
supports integer, fixed-point, and floating-point data from 64 to 8-bit. The official RISC-V V support
is not guaranteed with the default compiler for non-standard floating-point 8-bit data types, even if
hardware support is in place.

Additional information about a preliminary version of the architecture can be found at [12].

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 30

Scalar Core: The VPU is compatible with every scalar core that implements its interfaces. The
open-source RV64GC CVA6 RISC-V core is compliant with our VPU. In addition to the interface
requirement, the scalar core features a write-through L1 cache to ensure cache coherence with
the upper level of the memory, which is directly accessed by the VPU.

The VPU comes with a private memory Load/Store Unit (LSU) but uses the scalar core’s Mem-
ory Management Unit (MMU) to support virtual memory, which is mandatory when running an
operating system such as Linux.

In the following, we will use CVA6 when referring to the scalar core of our decoupled VPU archi-
tecture.

Interfaces: The VPU exposes multiple interfaces to its scalar core and the memory.

• Request/Response interface: Used to forward vector instructions and scalar operands to
the VPU, and receive results (if needed) and information on the possible occurred exception.
The interface is composed of an handshaked CVA6-to-VPU request (id, insn, rs1, rs2, frm)
and a VPU-to-CVA6 response (id, result, exception, fflags). A request is started by
CVA6, which forwards non-speculatively a vector instruction with the corresponding scalar
source operands to the VPU. Then, the VPU answers after all the exception checks (and
scalar result calculation, if needed). At this point, CVA6 can commit the vector instruction
while it is being processed by the VPU (provided that no exception has occurred).

• MMU interface: Used to let the VPU use virtual memory. The interface is composed of
a VPU-to-CVA6 request (acc mmu req, acc mmu vaddr, acc mmu is store) and a CVA6-to-
VPU response (acc mmu valid, acc mmu paddr, acc mmu exception). A request is started
by the VPU, which forwards a virtual address to CVA6’s Memory Management Unit (MMU).
The MMU answers back with the physical address and information on the possible exception
(e.g., page fault).

• Coherence interface: Used to keep memory consistency, coherence, and ordering be-
tween CVA6 and the VPU, and between the L1 and L2 levels of the memory hierarchy. The
interface is composed of a set of CVA6-to-VPU signals (acc cons en, store pending) and a
set of VPU-to-CVA6 signals (load complete, store complete, store pending). These sig-
nals are used by CVA6 and the VPU to prevent memory operation ordering violations. Also,
a dedicated AXI invalidation filter sends handshaked invalidation requests to CVA6 with a
64-bit address bus to invalidate cache sets that could have been made stale by a vector
store to the L2 memory.

• Memory interface: AXI4 interface, with L×32-bit R and W channels.

VPU: Vector instructions are decoded by the VPU, which also contains the RISC-V control and
status registers (CSRs), and broadcast to all the VPU’s units by its main sequencer, which also
keeps track of the high-level dependencies between vector instructions.

The VPU is composed of a parametric number of vector lanes. Each lane contains a vertical slice
of the Vector Register File (VRF) implemented with 8 SRAM banks, a SIMD integer ALU, a SIMD
integer multiplier, a SIMD integer divider, and a SIMD FPU. Every MACC operation is computed by
VPU’s unis in one cycle. Within one lane, the datapath of each VRF bank and computational unit
is 64-bit wide. With default settings, each VRF slice has a size of 4 KiB.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 31

Data is brought from the memory to the in-lane VRF slices (and vice-versa) through the vector
LSU. Also, the bytes of the vector register can be moved among lanes by means of the Slide
Unit (SLDU). Predicated execution is supported thanks to the Mask Unit (MASKU), which handles
bit-level vector shuffling to prepare byte strobes for the computational units, to selectively enable
or disable computation on particular vector element indexes.

The MASKU is also responsible for implementing vector instructions that operate on vectors with a
mask-byte-layout. The popc and vfirst instructions are multicycle and work on a parametric bit-
width to trade off IPC and routability (default: 16 bit/cycle). This also happens for the instructions
that generate other mask vectors in the MASKU, such as vms{b,i,o}f (default: half of the number
of lanes). Finally, the MASKU handles instructions such as vrgather and vcompress by preparing
the vector indexes in a FIFO and fetching the data from the correct lane. For better routability, this
instruction can fetch a maximum of one element per cycle.

All these units outside of the lanes work on a L×64 bit wide datapath. The memory bandwidth of
the architecture is L×32 bit/cycle. Thus, the computation-to-memory-bandwidth ratio is 2×.

Exception handling: Exceptions are reported to CVA6, which handles them. Floating-point
exception flags are reported asynchronously with a handshake interface to keep them updated in
CVA6’s appropriate CSR. A real exception can occur in the middle of a vector instruction only in
the case of memory operations, especially when virtual memory is enabled. When this is the case,
and an exception is raised, the VPU 1) reports the exception to CVA6, 2) waits until the operations
on the elements before the faulty one has finished, and 3) starts a flushing procedure that clears
the micro-architectural state in approximately 10 cycles. This operation is not latency-critical since
CVA6 is serving as an exception handler in the meantime.

Figure 3.11 shows a hypothetical high-level architectural integration of the multi-precision VPU in
an SoC.

Figure 3.11: High-level integration of the ETHZ Vector Processing Unit architecture.

The VPU directly accesses the L2 memory (e.g., L2 cache) by means of a wide AXI4 port. De-
pending on the number of vector lanes, the data width of the R and W channels can be higher

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 32

than 64 bit, the default width of CVA6’s L1 cache refill port. Therefore, an upsizer can be needed
to adapt its width before entering the main interconnect (or, in the alternative, a downsizer on the
VPU’s memory port, which can, however, impact VPU performance).

3.2.5.4 Evaluation

The architecture is in continuous evolution thanks to feature addition, improved verification, and
optimizations. A preliminary evaluation on an early and incomplete prototype of the architec-
ture’s PPA metrics in 22-nm technology showed that a CVA6 + VPU architecture (VPU config-
ured with 4 lanes) occupies less than 4 MGE and reaches 10.7 DP-GFLOPS with 280 mW of
average power consumption (i.e., with an energy efficiency of 37.8 DP-GFLOPS/W) when pro-
cessing a double-precision floating-point matrix multiplication on 256x256 matrices at 1.35 GHz
(TT,0.8V,25C). More information on the preliminary evaluation can be found at [12].

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 33

3.2.6 Vector-SIMD Accelerator – IMT

3.2.6.1 IP Card

Basic Info
IP name SIMD/Vector accelerator
License Open-source (GPLv3.0)
Repository https://github.com/alex2kameboss/MatrixAccelerator.git

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol CV-X-IF
Address Map N/A

Initiator Interface
Protocol CV-X-IF
Cached? N
IOMMU? N

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. units? Y (default 8 lanes)
Parameteric config? Y

Programmability Contains programmable cores? N
ISA RISC-V (RV32IMAC zicsr)

Software

Compiler Requires specialized compiler? Y
Compiler repository https://github.com/alex2kameboss/MA-riscv-gnu-toolchain.git

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) Bender.yml
Standalone simulation? Y
(if standalone sim) SW requirements? QuestaSim
Integration documented / examples? Example in https://github.com/alex2kameboss/MatrixAcceleratorDemo.git

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y (by Bender and custom scripts)
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? Y, initial evaluation in this document

3.2.6.2 Purpose

The SIMD accelerator is intended to accelerate matrix operations. Optimized hardware topologies
are used for specific matrix operations.

As a main feature, our accelerator features software defined 2D registers. The data is stored in a
2D internal memory that simplifies matrix storing and accesses.

The accelerator has its own RISC-V custom extension to reduce code size and committed in-
structions. The instructions are not expanded by compiler and are handled by hardware inside of
accelerator.

3.2.6.3 Architecture

The IMT SIMD/Vector accelerator is tightly coupled. The accelerator is connected to a RISC-V
core via an extension interface, called CV-X-IF [13]. Because the accelerator is connected to a
scalar core, we extended the RISC-V ISA.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 34

Figure 3.12 presents the internal architecture of the matrix accelerator. The main components
are: Decode Unit, Control Unit, Internal Memory, DMA Unit, Vector Unit and Matrix Unit.

Internal Memory

MUX

Matrix UnitVectorial UnitDMA Unit

Control
Unit

Decode
Unit Config

Data Bus

Register
File

Table

CVA6

AXI

Figure 3.12: SIMD accelerator internal architecture

The Control Unit is the most important component. This unit incorporates the Register File Table.
This table stores information about the 2D software defined registers. The information about a
2D register comprises of the width and height (expressed as number of elements), coordinates
regarding placement in the 2D internal memory and the data type. Another task of the Control
Unit is to choose the suitable arithmetic unit for the matrix operations. The integrity of the register
data is handled by us in the design, no extra hardware protection is implemented.

Decode Unit handles the CV-X-IF protocol. This component validates custom instructions, check-
ing if the unimplemented instruction is intended for our SIMD/Vector accelerator. Another task is
to access the register data from the core if the instruction requires it. When the component has
all data, instruction and registers data, will send the operation to the Control Unit to execute it.
When the execution is done, this information is communicated to the core.

A key component of the matrix accelerator is Internal Memory. The internal memory has the same
design as the Scrachpad memory described in Section 3.1.3 and it is based on the Polymorphic
Register File (PRF) [5]. A key feature is the 2D organization. The memory is distributed in
multiple independent memory banks and acts as a bi-dimensional address space. For this work,
the internal memory is configured to use the RoCo memory scheme. This organization allows us
to read multiple data elements in parallel with different patterns: we can access multiple data on
the same row, same column or a small sub-matrix. This memory module has two read ports, and
one write port. This is needed because arithmetic operations have two operands. The dual read
interfaces allow us to read the operands in parallel. The write and read operations are handled in
parallel using independent ports.

The accelerator has three execution modules. The DMA Unit has the role to load or store data in
internal memory. The Vector Unit can handle simple matrix operations, like those that can simply
be handled by vector processors. Those simple operations are matrix addition, subtraction and

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 35

multiplication element-by-element (cross product). Another arithmetic unit is the Matrix Unit. This
unit handles matrix multiplication and convolution (this operation is currently in development).

Those units do not work in parallel. The Control Unit configures a multiplexer and gives access to
the internal memory. Furthermore, the control unit passes information about the software defined
registers used in the operation. All units compute read and write 2D addresses based on that
information.

To improve memory utilization, we consider the case when processing narrow data data types that
are shorter than width of the memory. The Polymorphic Register File is composed of memory
banks that are 32-bits wide. When we read 8-bit data, we can pack four elements in one 32-
bit word stored in memory. The hardware takes this scenario into consideration and splits the
elements as needed.

An important parameter for our accelerator is the number of parallel lanes. This parameter sets
the number of data elements that can be accessed in parallel from the Polymorphic Register File.
The number of arithmetic units in the Vectori Unit is proportional with the number of lanes: one
ALU for every lane. Internally, the Matrix Unit has a systolic array that is dependent on number
of lanes. The height of this systolic array is equal with the number of lanes and the width is four
times the number of lanes. The unit is wider because if we process 8-bit data we must process
4× more data in parallel that for 32-bit numbers.

3.2.6.4 Experimental set-up

CVA6
(RV32IMAC) IMT SIMD

Accelerator

AXI xbar

RAM

I$ D$

UART CTRL

CV-X-IF

Figure 3.13: High level architecture of the matrix accelerator demonstrator

Figure 3.13 presents the high-level architecture of the demonstrator. We use the CVA6 [14]
RV32I RISC-V core with MAC zicsr extensions: hardware multiplication, compressed instruc-
tions, atomic extension and the Control Status Register (CSR) extension. In our configuration, the
core has 4KB of instruction cache, 8KB of data cache with write-through mode and has in-order
execution. A summary about the RISC-V core configuration is presented in Table 3.3.

The scalar core is connected to our SIMD accelerator via CV-X-IF [13]. Both are connected to the
same interconnect and share the same address space. The system has an RAM component, but
in our case also acts as a pseudo ROM because before starting we write the entire code to the
main memory.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 36

RISC-V Core CVA6
Extensions IMAC zicsr
L1 I$ 4KB
L1 D$ 8KB

Table 3.3: Demonstrator scalar core configuration

The UART component acts as a standard output: we redirect all output text to it. In that way,
we have a console for our system. The CTRL component stands for control. it is used to stop
the simulation: after the return from the main function, the code will set a flag in this component.
Furthermore, this component has a counter that is used for accurate measurements. We start the
counter and stop it after the section of code measured has completed execution. We may then
read the counter to collect performance metrics.

The benchmark suit has multiple tests employing various data types and matrix operations. The
data types tested are integer numbers on 8, 16 and 32-bit. The tested operations are matrix addi-
tion, subtraction, cross and dot product. All the tests have the same structure. The test starts by
creating the operands matrices and initializing them with random values. After that, those matri-
ces are defined and uploaded in the accelerator. The command for the matrix operation is sent to
the accelerator and when it is complete the data is written back to the main memory. Furthermore,
the result of the matrix operation is computed in software. Before reading the hardware results,
the data cache is flushed. In the end, the hardware and software results are compared against
each other. In that way, we measure speed-up and complete functional verification of accelerator.

To analyze the speed-up, we measure the elapsed time on the accelerator and on core. The time
on accelerator takes into consideration the register definition and memory operation, both load
operations and storing back the result. In that way, we want to measure the real time spent when
using the accelerator. The software computation time is measured before flushing the cache. In
that way we prevent a cold cache scenario.

In this set-up, the Register File has a constant size. It is configured with has two read ports - one
for each operand, and one write port for result. The 2D Register File has a word size of 32-bit and
a capacity of 1024×1024 elements, resulting in 4MB of usable storage.

For the FPGA tests we used the Xilinx VCU128 board. The resources available on this board
are sumarized in Table 3.4. The board has High Bandwidth Memory (HBM) and we will use this
memory as RAM for our FPGA experiments.

System Logic Cells (K) 2852
HBM DRAM (GB) 8
DSP Slices 9024
Block RAM (Mb) 70.9
UltraRAM (Mb) 270

Table 3.4: VCU128 available resources [7]

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 37

3.2.6.5 Evaluation

Table 3.5 presents the results for our accelerator configured with 8 parallel data lanes. The results
are obtained using a RTL simulator with very optimistic memory latency. This test highlights the
maximum speed-up we could obtain in a scenario where a high performance L2 cache would be
used. To have a functional system, the L2 memory needs to be shared between the accelerator
and the scalar core.

The test inputs are two square matrices. The number of rows in the matrix is presented in the table
in column Matrix size. The result is a square matrix with the same size. We analyze four types
of matrix operations: matrix addition (Addition), matrix subtraction (Subtraction), general matrix
multiplication (Dot Product) and element-by-element multiplication (Cross Product). The Core
clock cycles column lists the number of clock cycles on the RISC-V core with simple algorithms.
We measure the clock cycles of the operations on both the accelerator and scalar core.

In the accelerator there are two arithmetic units. The Vector Unit that computes element-by-
element operations: addition, subtraction and cross product. This is the reason those operations
have the same speed-up: the mathematical operation is different but data and control paths are
the same. On the other hand, the matrix multiplication is handled by the Matrix Unit, which
employs a systolic array. A systolic array is a dedicated hardware topology for matrix multiplication
with large throughput [15]. This is why the reported speed-up is so high.

Increasing the data width affects the number of memory transactions. The number of clock cy-
cles spent on the computation on the accelerator increases when employing wider data types.
However, the accelerator uses AXI Burst transactions which helps moving large volumes of data.

In Table 3.6 we study the impact of the number of lanes on the runtime of the accelerator. The
results are obtained from RTL simulations using the same scenario as the tests from Table 3.5.
Increasing the number of lanes decreases the total number of clock cycles. However, this reduc-
tion is not linear because the measurement also includes the definition of vector registers and the
memory operations - loading the data and storing the results.

Table 3.7 presents the resource utilization on the FPGA. The same presents both the resource
usage for the demonstrator and the stand alone SIMD accelerator. The synthesis results are
obtained using Xilinx Vivado 2024.1.

In order to evaluate the scalability of our design we performed a design space exploration. We
varied the number of lanes from 4 to 32. Furthermore, we studied the impact on the maximum
clock frequency when using either URAM or BRAM for the Polymorphic Register File.

The number of lanes directly impacts the number of parallel arithmetic units. The DSPs scale
almost quadratically. When we double the number of lanes the systolic array size is doubled both
in height and in width, leading to quadratic area increase. For regular vector operations such as
addition each lane has a corresponding ALU, leading to a linear resource increase.

When doubling the number of lanes the number of flip-flops (FFs) also doubles. The pipelines in
the accelerator are becoming wider as we increase the number of lanes. Furthermore, the control
paths have the same resource utilization as the memory module size is not changing. The control
elements resources only depend on the total capacity of the 2D Register File.

In Table 3.8 we analyze scalability of the design in terms of the maximum frequency with regard

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 38

Test type Data type Matrix
size

Accelerator
clock cycle

Core clock
cycles

Speed-up

Addition int8 t 32 474 84765 178.83
Subtraction int8 t 32 470 84678 180.17
Dot Product int8 t 32 514 3556085 6918.45
Cross Product int8 t 32 463 85694 185.08
Addition int16 t 32 666 90841 136.40
Subtraction int16 t 32 655 91626 139.89
Dot Product int16 t 32 818 3885403 4749.88
Cross Product int16 t 32 662 92692 140.02
Addition int32 t 32 1050 71449 68.05
Subtraction int32 t 32 1046 73532 70.30
Dot Product int32 t 32 1450 2944367 2030.60
Cross Product int32 t 32 1039 74652 71.85
Addition int8 t 64 1434 337409 235.29
Subtraction int8 t 64 1430 337525 236.03
Dot Product int8 t 64 1977 28260326 14294.55
Cross Product int8 t 64 1430 341568 238.86
Addition int16 t 64 2206 364147 165.07
Subtraction int16 t 64 2200 365598 166.18
Dot Product int16 t 64 3757 31168262 8296.05
Cross Product int16 t 64 2200 369687 168.04
Addition int32 t 64 3746 291650 77.86
Subtraction int32 t 64 3742 292077 78.05
Dot Product int32 t 64 7346 25915214 3527.80
Cross Product int32 t 64 3740 296144 79.18
Addition int8 t 128 5273 1345403 255.15
Subtraction int8 t 128 5278 1345428 254.91
Dot Product int8 t 128 11457 245374248 21416.97
Cross Product int8 t 128 5271 1362040 258.40
Addition int16 t 128 8362 1457864 174.34
Subtraction int16 t 128 8356 1458075 174.49
Dot Product int16 t 128 22724 270321852 11895.87
Cross Product int16 t 128 8358 1474422 176.41
Addition int32 t 128 14524 1163889 80.14
Subtraction int32 t 128 14516 1163932 80.18
Dot Product int32 t 128 45260 210673885 4654.75
Cross Product int32 t 128 14518 1180163 81.29

Table 3.5: Simulation results for a 8-lane SIMD accelerator

to the number of lanes and the use of URAM. We set the synthesis frequency at 100MHz, 10ns
period. Based on the worst slack, we computed the maximum frequency with the formula Fmax =
1000/(10−Worst Slack).

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 39

Test type Data type Clock cycles Speed-up
Scalar Core 4 lanes 8 lanes 16 lanes 4 lanes 8 lanes 16 lanes

Addition int8 t 336811 1944 1434 1202 173.26 234.88 280.21
Subtraction int8 t 337378 1940 1430 1196 173.91 235.93 282.09
Dot Product int8 t 28260690 5036 1977 1282 5611.73 14294.73 22044.22
Cross Product int8 t 341515 1940 1430 1196 176.04 238.82 285.55
Addition int16 t 363983 2716 2206 1988 134.01 165.00 183.09
Subtraction int16 t 365529 2703 2200 1975 135.23 166.15 185.08
Dot Product int16 t 31165445 9896 3757 2292 3149.30 8295.30 13597.49
Cross Product int16 t 369669 2703 2200 1975 136.76 168.03 187.17
Addition int32 t 291646 4247 3746 3551 68.67 77.86 82.13
Subtraction int32 t 291935 4252 3742 3554 68.66 78.02 82.14
Dot Product int32 t 25913921 19624 7346 4360 1320.52 3527.62 5943.56
Cross Product int32 t 296161 4252 3740 3554 69.65 79.19 83.33

Table 3.6: 64×64 matrices application runtime Design Space Exploration

Lanes URAM Demonstrator Accelerator
LUT [K] FF [K] BRAM URAM DSP LUT [K] FF [K] BRAM URAM DSP

4 YES 47.8 33.9 38 512 212 17.0 13.9 4 512 208
8 YES 65.4 54.5 42 512 800 34.5 34.5 8 512 796
16 YES 161.7 141.2 50 512 3128 130.9 121.3 16 512 3124
32 YES 1091.6 481.2 64 512 8642 951.0 461.2 30 512 8640
4 NO 55.8 33.8 1894 0 212 25.1 13.8 1860 0 208
8 NO 73.4 54.5 1898 0 800 42.0 34.6 1864 0 796
16 NO 164.2 141.3 1904 0 3128 132.9 121.3 1870 0 3124
32 NO 1096.4 481.6 1920 0 8642 955.8 461.6 1884 0 8640

Table 3.7: VCU128 resource utilization Design Space Exploration

Lanes URAM Demonstrator Accelerator
Max F [MHz] Max F [MHz]

4 YES 133.65 196.54
8 YES 131.60 197.78
16 YES 135.28 194.97
32 YES 66.63 66.63
4 NO 143.23 196.54
8 NO 147.28 156.49
16 NO 144.68 156.49
32 NO 66.63 66.63

Table 3.8: Maximum clock frequency Design Space Exploration

The accelerator frequency is limited by the clock frequency of the internal memory, based on
the Polymorphic Register File. The clock frequency observed for the accelerator is a few MHz
below the stand-alone PRF. We observed that the number of lanes has also has an impact on the
systolic array. On the 32-lanes design, the control path of the systolic array becomes very large
and complex. The systolic array control path will require further analysis.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 40

3.2.7 Extension Platform (EXP) – TUI

3.2.7.1 IP Card

Basic Info
IP name Extension Platform (EXP)
License Open-source (SolderPad)
Repository Not yet released

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol CV-X-IF
Address Map N/A

Initiator Interface
Protocol AXI-S, AXI to AXI-S bridge, CV-X-IF
Cached? N
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. units? Y
Parameteric config? Y

Programmability Contains programmable cores? N
ISA RISC-V (RV64IMAC)

Software

Compiler Requires specialized compiler? N
Compiler repository N/A

Hardware Abstraction Layer Linux kernel-mode driver N, work in progress
Bare metal HAL Y

High-level API
Is there a high-level API/SDK? N
SDK repository N/A
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? Y
(if standalone sim) SW requirements? XSIM, QuestaSim
Integration documented / examples? N, work in progress

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim, XSIM)
Open-source simulation? Y (Verilator)

Evaluation PPA results available? N, work in progress

3.2.7.2 Purpose

The proposed accelerator is a scalable hardware unit optimized for DSP algorithms, including
efficient 1D and 2D DCT/iDCT on streaming data, aimed at real-time applications. It targets
RISC-V SoCs and FPGAs, providing high throughput, low latency, and flexible integration through
AXI4-Stream and a lightweight control interface.

3.2.7.3 Architecture

The Extension Platform (EXP) is designed as a scalable, composable architecture for deploy-
ing heterogeneous compute engines (PEs) optimized for digital signal processing - Figure 3.14.
Based on the architecture presented in the EXP, a DCT/iDCT accelerator is effectively integrated
as a set of dedicated Processing Engines (PEs) within the EXP.

This vector-style hardware accelerator is designed for real-time DSP workloads, including signal
transformations, feature extraction, and image/video compression, on RISC-V-based SoCs and
FPGAs.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 41

Shared
input
buffer

&
Scheduler

CVA6 RISC-V Core

Vect Config Regs

DCT/iDCT
Core0,0

DCT/iDCT
Core0,1

DCT/iDCT
Core0,N-1

Shared
output
buffer

Controller

Perf Counters

CV-X-IFAXI-S

Quantizer
Core0

Quantizer
Core1

Quantizer
CoreN-1

Quantizer Coefs

DCT/iDCT
Core1,0

Buffer

DCT/iDCT
Core1,1

DCT/iDCT
Core1,N-1

Figure 3.14: Internal architecture of the DCT/iDCT accelerator.

The DCT/iDCT accelerator is a pipelined, vector-driven architecture designed to perform 1D and
2D Discrete Cosine Transforms (DCT) and its inverse, on streaming data using integer arithmetic.
At its core, the design comprises multiple parallel DCT/iDCT compute units, each implement-
ing a 8-point 1D DCT/iDCT using fixed-point operations. The input data is received through an
AXI4-Stream interface, buffered into N-length vectors (typically N=8), and distributed to available
DCT/iDCT cores via a hardware scheduler that supports core masking, bypassing, vector length
control, and stride-based block spacing. Each DCT/iDCT core outputs a transformed block, which
is post-processed for dynamic scaling. Configuration and control are managed through a CV-X-IF
interface that exposes vector length, stride, scaling factors, operation modes, and execution flags
to a RISC-V host processor. Alternately, the input data may be received via CV-X-IF interface,
packed into source registers.

For two-dimensional DCT/iDCT, the architecture is extended using a two-stage pipeline composed
of two identical 1D DCT/iDCT cores separated by an intermediate on-chip transpose buffer. The
first DCT/iDCT stage accepts streamed input representing the rows of an N×N block and performs
row-wise 1D DCTs/iDCTs. These outputs are written to a local dual-port RAM-based buffer, or-
ganized to allow row-to-column transposition without halting the dataflow. Once the entire block
is buffered and transposed, the second DCT/iDCT stage processes the columns of the trans-
formed block to complete the 2D DCT/iDCT operation. The final results are streamed out over the
AXI4-Stream output port.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 42

To enable observability, tuning, and optimization, the DCT/iDCT accelerator architecture inte-
grates a set of performance counters accessible via the CV-X-IF interface. These counters track
key runtime metrics including the number of DCT/iDCT blocks processed, AXI4-Stream input and
output packets, per-core utilization, active and idle cycle counts. Each DCT/iDCT core maintains
its own usage counter, allowing the RISC-V host to assess load balancing and identify bottle-
necks. These performance counters are exposed through dedicated registers, which can be read
non-invasively during or after computation.

The DCT/iDCT accelerator is designed for seamless integration with system-level data movement
and control infrastructure, featuring direct support for DMA (Direct Memory Access) and interrupt
signaling. On the data side, the accelerator interfaces with memory-mapped regions via AXI4-
Stream, enabling high-throughput DMA engines. The same AXI4-Stream output path supports
streaming results directly into memory or into a subsequent processing pipeline.

To facilitate autonomous operation and event-driven synchronization with the host processor, the
accelerator supports interrupt generation through a status output tied to the internal execution
controller.

The DCT accelerator architecture is inherently scalable, making it suitable for deployment across a
range of hardware platforms from resource-constrained edge FPGAs to high-performance SoCs.
Internally, the number of parallel DCT/iDCT compute cores can be configured at synthesis time
to match performance and area constraints. Furthermore, the modular design allows for multiple
independent instances of the accelerator to be instantiated within a system, each operating on
separate data streams or partitioned workloads.

With small structural modifications, the same architectural framework can support other DSP com-
putations such as digital filtering, Fourier transforms, and matrix-vector multiplication. For digital
filtering, the MAC-based cores can be reconfigured to implement finite impulse response (FIR)
filters, with programmable coefficient sets and circular buffering to support streaming convolu-
tion. For spectral analysis and frequency-domain processing, the DCT cores can be replaced or
augmented with fixed-point FFT cores, with the same streaming and vector control logic enabling
block-wise Fourier transforms. The architecture can be adapted to perform dense matrix-vector
multiplications by loading weights as static matrices and streaming feature vectors as inputs.

3.2.7.4 Evaluation

The 1-dimensional DCT and IDCT extension implementations were validated using a custom
verification framework designed to ensure correctness - Figure 3.15. This framework employs
three distinct black-box testing approaches to assess the functional accuracy of the extensions
and measure the required cycles for result generation.

The first method involves running multiple test cases on a Verilator-based simulation testbench.
The second method executes the same tests using Xsim, the default simulator provided by Vivado.
The third method conducts hardware-in-the-loop testing on an Artix-7 FPGA, where a synthesized
testbench communicates with a PC over UART to exchange test vectors and result data.

All test outputs are logged in XML format and compared using a Python script, which determines
the final validation verdict.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 43

Accel DSP FF LUT 4 Latency
DCT 12 179 432 8
iDCT 12 405 789 14

Table 3.9: DCT/iDCT Resource usage and latency

 Verilator Simulation

Test Bench

DCT/IDCT
Core

Verifier
Module

 Vivado XSIM Simulation

Test Bench

DCT/IDCT
Core

Verifier
Module

Artix 7 FPGA (XC7A35TCSG324-1L)

 Test Bench

DCT/IDCT
Core

Verifier
Module

UART
Comm

Test
Cases
(.xml)

Verilator
Results
(.xml)

XSIM
Results
(.xml)

FPGA
Results
(.xml)

Python Results Comparer Script

Summary
&

Versict
(.xml)

Figure 3.15: Evaluation framework

Other evaluation activity was focused on the integration and performance evaluation of embedded
Streaming Hardware Accelerators (eSACs) within RISC-V-based System-on-Chip (SoC) designs
[16]. The study aimed to explore architectural strategies that improve data throughput and reduce
communication latency between a Central Processing Unit (CPU) and a hardware accelerator
using the AXI-Stream protocol. Emphasis was placed on the influence of Direct Memory Access
(DMA) configurations and data organization schemes on latency and resource utilization.

Three architecture models were implemented and evaluated as presented in Figure 3.16: Tightly-
coupled Streaming, Protocol Adapter FIFO, and Direct Memory Access (DMA) Streaming. The
experiments were conducted using the AMD MicroBlaze-V softcore processor integrated into a
minimal FPGA-based SoC. The evaluation platform operated at 100 MHz and targeted the Digilent
Nexys A7 development board. RTL simulation and an Integrated Logic Analyzer (ILA) were used
to gather latency metrics and validate performance.

Key findings indicate that the DMA-based architecture significantly outperforms the others in terms

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 44

Figure 3.16: Architecture models

of latency, achieving up to a 65% reduction compared to the Tightly-coupled model. The Tightly-
coupled and Protocol Adapter approaches, while resource-efficient, suffer from high CPU utiliza-
tion and limited parallelism, rendering them unsuitable for high-throughput streaming applications.
Among the DMA scenarios, data organization emerged as a critical performance factor. The sim-
plest organization (1P1BD) yielded the lowest latency, whereas poor data structuring (e.g., highly
fragmented or chaotic buffer descriptor setups) resulted in over a 7× increase in latency for iden-
tical data payloads.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 45

3.3 Cryptographic and Security Accelerators
This section introduces hardware accelerators to enhance the cryptographic capabilities and se-
curity robustness of RISC-V-based systems, developed as part of the activity of Task 3.5 – Cryp-
tographic and security accelerators, led by SAL. These IPs are designed to support post-
quantum cryptographic primitives, hardware-based key encapsulation mechanisms, and integra-
tion with secure RISC-V cores.

The IPs in this category include:

• ACC-BIKE – Accelerator for Post-Quantum Key Encapsulation Mechanism BIKE (POLIMI):
A hardware implementation of the BIKE key encapsulation mechanism, optimized for area
and power efficiency in post-quantum scenarios.

• HLS-PQC – HLS-Based Post-Quantum Cryptographic Accelerator (BSC): A post-quantum
cryptography accelerator implemented via high-level synthesis, allowing for flexible adapta-
tion to evolving algorithmic standards.

• NTT – Number Theoretic Transform Algorithms for Post-Quantum Cryptography (IMT):
Two new generic fast NTT algorithms (complex Mersenne NTT and Hensel-Fermat NTT)
applicable to all polynomial multiplications in PQC, with software implementation for vector
accelerators and hardware implementation as universal NTT accelerators.

• PQC-MA – Post-Quantum Crypto Accelerator (SAL): A general-purpose accelerator tar-
geting various post-quantum algorithms with parameterizable configurations for performance
and security trade-offs.

• SEC – Secured RISC-V Processor with Cryptographic Accelerators (BEIA): An en-
hanced RISC-V core integrated with dedicated cryptographic modules, providing a secure
execution environment and hardware-level protection mechanisms.

These components enable ISOLDE platforms to meet emerging requirements for post-quantum
security, while offering hardware-accelerated cryptographic performance suitable for embedded,
automotive, and IoT applications.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 46

3.3.1 Accelerator for Post-Quantum Key Encapsulation Mechanism BIKE
(ACC-BIKE) – POLIMI

3.3.1.1 IP Card

Basic Info
IP name Accelerator for Post-Quantum Key Encapsulation Mechanism BIKE (ACC-BIKE)
License Proprietary closed source
Repository

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4 Lite 64b (async)
Address Map Base + 0x0 (status register) / Base + 0x1c (address register)

Interrupts Interrupts N

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? N

Programmability Contains programmable cores? N
ISA N.A.

Software

Compiler Requires specialized compiler? N
Compiler repository https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? Y
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any)
Standalone simulation? Y
(if standalone sim) SW requirements? AMD Vivado + QuestaSim
Integration documented / examples?

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? Y, work in progress

3.3.1.2 Purpose

The hardware accelerator implements the BIKE post-quantum cryptosystem, i.e., a cryptographic
scheme that can be executed on traditional computers and is secure against both traditional and
quantum attacks. BIKE is a code-based key encapsulation mechanism (KEM) that makes use
of quasi-cyclic moderate-density parity-check (QC-MDPC) codes. Such QC-MDPC codes are
employed in a scheme similar to the well-studied Neiderreiter cryptosystem, which dates to the
early 1980s. The public-private keypairs, plaintexts, and ciphertexts of BIKE are represented, due
to the quasi-cyclic property of BIKE codes, as binary polynomials with a bitlength in the order
of tens of thousands of bits (kbits). Moreover, the moderate-density nature of the underlying
code employed by BIKE further eases decoding by leveraging a sparse representation of the
polynomials, with a Hamming weight in the order of few hundreds.

A KEM is a cryptographic primitive used to securely establish a shared symmetric key between
two parties, typically within a public-key infrastructure. It is particularly useful in hybrid encryption
schemes, where the encapsulated key is used with a symmetric encryption algorithm to protect
data. A KEM consists of three core algorithms, namely, key generation, encapsulation, and de-
capsulation, as shown in Figure 3.17. Key generation generates a pair of keys, i.e., a public key

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 47

Key generation

Encapsulation
with public key

Decapsulation
with private key

Client Server

Public key

Ciphertext
Private key

Ciphertext

Shared key

Public key

Shared key

Figure 3.17: High-level diagram of a shared key exchange by means of BIKE.

and a corresponding private key. Encapsulation takes the public key as input and outputs a ci-
phertext that encapsulates key material and a shared secret. Decapsulation takes the private key
and the ciphertext as input, and deterministically recovers the shared secret. KEMs are widely
used in securing session keys in protocols such as TLS, and play a foundational role in post-
quantum cryptography, where traditional key exchange mechanisms are no longer considered
secure against quantum adversaries.

Status

Address

FSM

Key
Generation

Encapsulation

Decapsulation

AXI lite
slave

AXI
master

Figure 3.18: Architecture of the BIKE accelerator.

3.3.1.3 Architecture

The BIKE accelerator is designed to be integrated in platforms making use of an AXI interface, and
its architecture is depicted in Figure 3.18. The accelerator features two AXI interfaces to facilitate
communication with the host processor and memory. The AXI Lite slave interface is responsible
for receiving commands from the host processor while the AXI master interface handles memory
access to fetch input data and store processed results.

The architecture is composed of three primary functional blocks, respectively devoted to key gen-
eration, encapsulation, and decapsulation, that are orchestrated by a finite state machine (FSM),
which manages the data flow and operations.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 48

Interfaces The accelerator employs two AXI interfaces to facilitate communication with the host
processor and memory.

The AXI Lite slave interface is used for control and configuration. It has a 6-bit address width
and a 64-bit data width. The Status register is mapped to BASE+0x0, while the Address register
is mapped to BASE+0x1C. To initiate computation, a starting bit in the Status register is set. The
computation completes when the done bit is set in the Status register, and the idle bit remains
set. The 3-bit Status register includes a starting bit, that is set to initiate computation, a done bit
that is set when computation completes, and an idle bit. The 64-bit Address register stores the
address of the input data.

The AXI master interface is responsible for memory access, with a 64-bit address width and a
64-bit data width. Data is shared between the host and the accelerator through a memory region
of 8472 bytes. The last byte of this region is used to provide an opcode to select the operation
mode, holding values of 0x1, 0x2, and 0x3 for key generation, encapsulation,and ecapsulation,
respectively. Additionally, a random seed value must be provided as input and mapped into the
shared memory region.

3.3.1.4 Evaluation

The architecture of the BIKE accelerator’s prototype has been implemented by leveraging high-
level synthesis (HLS) to implement the components for the key generation, encapsulation, and
decapsulation primitives. The prototype accelerator is designed to be integrated into a Cheshire
SoC that features a CVA6 host processor.

HLS, RTL synthesis and implementation were carried out by means of AMD Vivado, while sim-
ulation was performed in QuestaSim. Synthesis and implementation targeted an AMD VCU118
FPGA board.

The prototype implementation of the accelerator occupies an area of 120661 lookup tables, 85146
flip-flops, 114 blocks of block RAM, and 58 DSP elements and operates at a clock frequency of
100MHz.

The key generation, encapsulation, and decapsulation operations take respectively 13621788000,
632168000, and 11821833000 clock cycles.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 49

3.3.2 HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC) – BSC

3.3.2.1 IP Card

Basic Info
IP name HLS-Based Post-Quantum Cryptographic Accelerator
License Open-source (SolderPad Hardware License v0.51)
Repository https://github.com/bsc-loca/PQC-Crystals-HLS-Accelerators.git

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4-Lite 64-bit
Address Map Base KEM + 0x0 - 0x48 (ML-KEM) — Base DSA + 0x0 - 0x60 (ML-DSA)

Initiator Interface
Protocol AXI4 32-bit
Cached? N
IOMMU? N

Interrupts Interrupts Asynchronous
Microarchitecture

Parametrization Parametric no. units? Y (default 8 cores)
Parameteric config? Y

Programmability Contains programmable cores? N
ISA RISC-V (ready for Selene RV64GCH)

Software

Compiler Requires specialized compiler? N
Compiler repository

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? N
(if standalone sim) SW requirements?
Integration documented / examples? README in https://github.com/bsc-loca/PQC-Crystals-HLS-Accelerators.git

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (Xilinx Vivado)
Open-source simulation? N

Evaluation PPA results available? N

3.3.2.2 Purpose

The purpose of the HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC) IP is to
provide a high-performance and flexible hardware solution for accelerating post-quantum crypto-
graphic schemes, specifically CRYSTALS-Kyber (ML-KEM) and CRYSTALS-Dilithium (ML-DSA).
These schemes are among the finalists selected by the NIST PQC standardization process and
are designed to withstand quantum computer attacks.

This IP targets integration in RISC-V SoCs, specifically within the SELENE platform (a NOEL-V
multicore SoC), to enhance the security capabilities of modern embedded systems. It uses High-
Level Synthesis (HLS) to ensure rapid development and portability across hardware targets. Also,
it focuses on maximizing throughput, minimizing latency, and supporting concurrent execution
through modular and parametric design.

By accelerating the core operations of key encapsulation and digital signatures, the HLS-PQC IP
aims to reduce the computational burden on general-purpose cores and meet stringent perfor-
mance and power requirements for real-world secure applications.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 50

3.3.2.3 Architecture

This IP consists of two accelerators based on High-Level Synthesis (HLS) for post-quantum cryp-
tography (PQC): one designed to accelerate the CRYSTALS-Kyber (ML-KEM) scheme and the
other for the CRYSTALS-Dilithium (ML-DSA) scheme. The architecture of these accelerators is
modular and loosely coupled, allowing for maximum parallelization and pipelined execution. As
illustrated in Figure 3.19, they are designed to be integrated within the SELENE platform, together
with the SafeTI and SafeSU described on deliverable D3.2, sections 3.1.8 and 3.2.3, respectively.
The interfaces of the accelerators connect to the core through a Network-on-Chip (NoC) using
AXI4 protocols.

Control and configuration are handled through AXI-Lite, whereas data transactions occur over
dedicated AXI-Full interfaces with 32-bit-wide buses, ensuring efficient data handling. The stan-
dalone architecture supports high-frequency operation (up to 500 MHz) and includes a straight-
forward hardware reset strategy for reliable operation.

The design partitions algorithms into functional modules for concurrent execution, substantially
enhancing processing speed. However, addressing the overhead of data fetching remains crucial
to fully leveraging the accelerator’s performance potential.

CORE 0 CORE 1 CORE 2 CORE 3

Interconnect

Shared
L2 cache

SafeSUGPP

G
PP

s,

ac
ce

le
ra

to
rs

SafeTI

Interconnect

Shared L3 cache

DDR controller

SafeSU

PQC
accelerators

Figure 3.19: HLS-PQC - Place in the SELENE Platform SoC

3.3.2.4 Evaluation

Next, we evaluated the HLS-based accelerator for CRYSTALS-Kyber at the kyber512 security
level and CRYSTALS-Dilithium at the Dilithium-3 security level. These accelerators are integrated
with the SELENE SoC and implemented on a Xilinx VCU118 FPGA operating at 100 MHz.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 51

For CRYSTALS-Kyber (kyber512), encapsulation operation requires 16.61K cycles (5.14K cycles
for scheme computation alone), and decapsulation takes 13.11K cycles (7.06K cycles for scheme
computation alone). FPGA resource usage includes 149K LUTs, 129K FFs, 7K BRAMs, and 341
DSP units, consuming 1.66 W of dynamic power.

In the case of CRYSTALS-Dilithium (Dilithium-3 security level, 2430-byte message), signature
generation completes in 7.72K cycles (39.75K cycles for scheme computation alone), and ver-
ification takes 6.99K cycles (12.31K cycles for scheme computation alone). FPGA resources
utilized comprise 174.95K LUTs, 279.09 FFs, 480 BRAMs, and 996 DSP units, with a dynamic
power consumption of 1.88 W.

Overall, the results demonstrate significant potential for acceleration, highlighting the necessity of
external support mechanisms to enhance the efficiency of the data fetch process.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 52

3.3.3 Number Theoretic Transform Algorithms for Post Quantum Cryptog-
raphy (NTT) – IMT

3.3.3.1 IP Card

Basic Info
IP name Number theoretic transform (NTT) accelerator
License Open-source (GPLv3.0)
Repository https://github.com/mgologanu/MersenneNTT

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped?
Protocol AXI
Address Map

Initiator Interface
Protocol AXI
Cached? N
IOMMU? N

Interrupts Interrupts

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? Y

Programmability Contains programmable cores? N
ISA RISC-V

Software

Compiler Requires specialized compiler? N
Compiler repository

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? only software version
(if standalone sim) SW requirements?
Integration documented / examples? WIP

Synthesis
Is the IP synthesizable? WIP
FPGA synthesis scripts/example available? WIP
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? N
Open-source simulation? Y

Evaluation PPA results available? Software version using vectorial acceleration

3.3.3.2 Generic NTT Algorithms

We have developed two new generic algorithms for Number Theoretic Transforms (NTT) as used
in post-quantum cryptography for multiplying two polynomials in finite rings. We have tested them
for correctness in an integrated environment (MATLAB) and for acceleration capabilities in a C
implementation targeting vector accelerators for x86 (avx2 and avx512). We have just started the
hardware implementation with the help of a new hire.

The proposed algorithms are universal in the sense that they can be used both for NTT friendly
and for NTT unfriendly choices of finite polynomial rings, with speeds comparable to the friendly
case. They provide a generic accelerator useful for a variety of cryptographic methods.

Let a(X) and b(X) two polynomials in Zq[X]/(P (X)) where P (X) is a polynomial of degree
n, and we need to evaluate their product in the same ring. NTT friendly cases are defined by
P (x) = xn ± 1 and the existence of roots of order n in Zq. This last condition is equivalent to
n being a divisor of the Φ(q) with Φ Euler’s totient function. For q a prime, Φ(q) = q − 1. NTT

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 53

unfriendly cases are all other choices for q and P (X).

The approach we use for multiplying two polynomials is well known from signal processing where
a linear convolution can be obtained via circular convolutions using FFT, by extending the arrays
by zeros to a sufficiently large length, typically a power of 2 for the fastest FFT. Let k = 2t > 2(n−1)
be the closest power of 2 larger than twice the degrees of the two polynomials a(X) and b(X) in
Zq[X]/(P (X)). We will calculate their full product a(X)b(X) in Z[X], and then reduce the result
modulo both q and P (X). To use NTT, we need to work in a new polynomial ring Zr[X]/(Xk − 1),
with r chosen so that Φ(r) is divisible by k = 2t such that roots of unity of order k are available
in Zr. Also, the value r must be large enough to capture the maximal possible coefficient of
a(X)b(X) in Z[X].

The first algorithm (complex Mersenne NTT) is based on the choice r = p = 2s − 1, with p a
Mersenne prime, with examples 217−1, 219−1, 231−1, 261−1, etc. At first view this choice is not
valid, as p − 1 is divisible only by 2 and not by higher powers of 2. We note that the well-known
Mersenne transform is used for roots of unity of small and prime order s = 17, 19, 31, 61... for the
examples above. On the contrary, our method is based on the existence of complex roots of unity
up to order 2s+1, appearing in the finite field extension Zp → Fp2 , the unique finite field of order p2.
In this case, roots of unity exist for all factors of p2 − 1 = (p− 1)(p+ 1) = 2s(p− 1). One possible
presentation of Fp2 , valid only when −1 is not a square in Zq, is precisely as Zp

⊕
jZp where j is a

symbol similar to the imaginary value defined as j2 = −1 mod p. As a consequence, we will have
NTT for all powers of 2 up to 2s+1. The price to pay is that we need to consider complex values
with complex multiplication and additions. However, all properties of the complex and real FFT
are preserved (symmetries, conjugate, etc.), so that we can calculate the complex NTT transform
of a real array in place with 2N log2 N operations (via the split radix algorithm). While this is
larger than the 1.5N log2 N operations for classical NTT without complex values, the comparison
reverses when taking into account the total number of operations due to modular additions and
multiplications, as modular reductions for Mersenne numbers are almost free (a supplementary
shift and add for each operation).

The second algorithm (Hensel-Fermat NTT) is based on the choice r = pm, a power of a Fermat
prime, with only two convenient choices: p = 28 + 1 and p = 216 + 1. While the Fermat transform
is well known and used, the choice of a power of p is rather unusual, as the ring Zpm is not a field
anymore, admitting factors of zero. However, Hensel’s lemma lets us extend the existing roots of
order 28 or 216 in Zp to roots in the large ring Zm

p . However, in order to avoid multiplication and
addition of these large numbers, we propose to work with the representation in base p, where
each number x ∈ Zm

p is written uniquely as x = x0 + x1p + x2p
2 + ...xm−1p

m−1 and we work
directly with the list of m coefficients x0, x1,, xm−1, each being remainder mod p or a number
in Zp. Addition and multiplication for such a representation can be done using additions and
multiplications in the small ring Zp.

Again, modular reduction in Zp is very simple (one shift and one addition), without any supple-
mentary multipliers, contrary to the case of arbitrary moduli where one needs Barrett or Mont-
gomery reduction, each using two supplementary multiplications and several shifts and addi-
tions/subtractions.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 54

3.3.3.3 Architecture

The proposed architecture is presented in Figure 3.20. It is based on the in-place, decimation
in frequency, scrambled output NTT for arrays of length a power of 2. It requires several passes
through the array of coefficients, each pass being a radix-8 or radix-4 reduction. At each pass,
8x8=64 values are transferred from memory to the accelerator, and then transferred back after
transformation. This configuration permits us to apply NTT to arrays of arbitrary lengths (powers
of 2 greater than 64).

NTT
RADIX 8/2x4

No multipliers

No modular
reductions

Only add/sub
and shifts

Memory

Modular mul

Modular mul

Modular mul

Modular mul

Modular mul

Modular mul

Modular mul

Modular mul

CVA6

CONFIG

8x8 buffer

Root generator/table

Figure 3.20: NTT accelerator for Mersenne and Hensel-Fermat numbers

The accelerator consists of:

• An addressable buffer for 64 values (8x8) read/written from memory (using contiguous lo-
cations in memory).

• One radix-8 block that applies NTT-8 to eight values or one column in the 8x8 buffer. For
both Mersenne and Hensel-Fermat algorithms, this block contains only adders, without any
multiplier, and with no modular reductions (using lazy reduction, as tested in the C version).

• The same radix-8 block can be used as two parallel radix-4 blocks
• Eight parallel blocks for modular multiplication with roots of unity are located at the exit of

the radix-8 block. After this operation, the values are written back to the 8x8 buffer in the
original column.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 55

• A root generator or a root table; alternatively roots could also be transferred from memory
in a second 8x8 buffer.

• A configurator block that controls the selection of the working column in the buffer, the
selection of the relevant roots, and the configuration of the radix block as radix-8 or twice
radix-4. It also reports back to the processor when all 8 columns have been evaluated.

• After the application of radix-8 to all columns in the buffer, the values are written back to
memory (in-place).

• The evaluation of the columns through the radix block and multipliers can be pipelined. Alter-
natively, several radix-8 blocks (2/4/8) can be used in parallel to speed-up the transformation
of all columns in the buffer.

• A special case appears at the end of the direct NTT, where after passing the 8 columns
through the radix block, we need to pass the same values again, not as columns but as
rows. This behaviour is also controlled by the configuration block. Alternatively, this step
can be delegated to the processor (equivalent to an in place 8x8 transpose).

Due to the in-place, scrambled output of the NTT, we need another accelerator for the inverse
NTT. It has the same structure as in Figure 3.20, but with red arrows reversed. For the Mersenne
complex NTT, we can use well-known methods for real inputs, either doing two transforms at the
same time, or dividing the array in two parts, and using one as real and the other as imaginary
components. Alternatively, half of the radix-8 block can be used for real input, as the other half
gives conjugate values.

3.3.3.4 Evaluation

The proposed NTT algorithms have been tested only in a software implementation using vectorial
accelerators (avx2 and avx512) that mimic the proposed architecture. The 8x8 buffer is assimi-
lated with 8 vectorial registers holding each 8 values. The special case requiring the application of
radix-8 to columns and then to rows has been obtained using in-vector shuffles and permutations.
Lazy modular reduction has been applied to all additions and subtractions. A single reduction
(one shift and add) has been applied after each multiplication with a root of unity. This method
does not fully reduce to a remainder below the modulus, but to some value less than some small
multiple of the modulus, and will be later absorbed at the next multiplication. Practically, there is
no need for comparison operations and if branches. Only at the end of the full polynomial product
do we need to fully reduce the coefficients, and this can be done outside the accelerator at the
same time with the reduction modulo the original prime q.

We note that the software implementations of the new algorithms have an intrinsic value, as they
can easily be ported from avx2/512 to the vectorial accelerators for RISC-V. The scalar versions
are also useful for use in embedded processors.

The preliminary results are encouraging. For example, using avx2 acceleration and 64 bit in-
tegers, we have obtained for Mersenne NTT with prime 231 − 1 a number of 1900 cycles for a
single NTT of length 512, (as needed for Kyber PQC, a NTT-friendly case), and 9000 cycles for a
single NTT of length 2048 (as needed for NTRU Prime, a NTT-unfriendly case). A more compact
implementation using 32 bit integers should provide another speed-up factor of 2, as twice as
more values can be squeezed in a single register. These results are promising as they are in
the same ballpark as published results for NTT-friendly cases, and offer some improvement for
NTT-unfriendly ones. However, a hardware implementation should offer much more gains, as the

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 56

new algorithms require a much smaller number of multipliers.

We have just started the hardware implementation of the above architecture, with the following
cases:

• FPGA – Mersenne prime p = 217 − 1, taking advantage of the 18x25 DSP multipliers. This
will cover directly some PQC applications (Kyber for q = 3329 and module of rank 3, but also
NTRU Prime for typical choices of parameters via a simple trick2.

• FPGA – Hensel-Fermat for the power r = (216 + 1)2 ≈ 232, again taking advantage of the
18x25 DSP multipliers, and covering directly all known NTT cases

• ASIC – Hensel-Fermat for the third power r = (28 + 1)3 ≈ 224, where only small multipliers
for 8x8 are needed. In this case we have NTT only for lengths up to 256, giving only an
incomplete NTT for longer arrays. In this case, the multiplication in the NTT domain is
equivalent to the multiplication of two small degree polynomials and this can be done by the
CPU, or implemented as a supplementary block. Note that in this case we are not targeting
an ASIC but will still use a FPGA implementation.

2In all polyomial multiplications a(X)b(X) encountered in PQC, one polynomial b(X) has very small coefficients, while
the other can be written as a(X) = a(0)(X) + 2ta(1)(X) + 22ta(2)(X) + ..., where each polynomial a(i)(X) has also
relatively small coefficients. The value of t is chosen so that each product a(i)(X)b(X) can be calculated in the chosen
ring Zr[X] without overflow, and then the final sum is done directly in the original ring.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 57

3.3.4 Post-Quantum Crypto Accelerator (PQC-MA) – SAL

3.3.4.1 IP Card

Basic Info
IP name Accelerator for PQC Primitives
License Closed-source
Repository Not yet released

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI
Address Map TBD

Initiator Interface
Protocol AXI
Cached? N
IOMMU? N

Interrupts Interrupts Y

Microarchitecture

Parametrization Parametric no. units? Y
Parameteric config? Y

Programmability Contains programmable cores? N
ISA

Software

Compiler Requires specialized compiler? Y
Compiler repository standard toolchain

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? Y
(if standalone sim) SW requirements? Vivado or Verilator
Integration documented / examples? WIP

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? N
Open-source simulation? Y

Evaluation PPA results available? Preliminary results for FPGA

3.3.4.2 Purpose

Our work aims to accelerate the hardware implementation of the Classic McEliece (CM) Key
Encapsulation Method (KEM), which is a code-based system and a finalist in the National Institute
of Standards and Technology (NIST) efforts to select and standardize PQC algorithms1.

3.3.4.3 Architecture

We base the overall HW design on previous FPGA based implementations of the CM cryptosys-
tem and primitives [17], aiming to accelerate the key functions involved at multiple points in the
execution of CM. This gives more flexibility in which algorithms and security levels can be imple-
mented, and easier modification of the overall functionality of the system. The CM cryptosystem
defines three main mathematical functions:

1. key generation (KEYGEN) – generates the public and private key pairs from random bits
2. encapsulation (ENCAP) – generates a cipher text and session key from a public key and

random bits

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 58

Figure 3.21: SAL Accelerator for PQC Primitives

3. decapsulation (DECAP) – outputs a session key when given a cipher text and a private key.

Interfaces: Our implementation is a memory-mapped system, planned to interface with the
OpenHWGroup’s CVA6 core, via the AXI-4 bus interface[18]. We also make use of the AXI cross-
bar and some of the peripherals based on the AXI protocol.

3.3.4.4 Evaluation

We reuse the basic frameworks for the three main modules from the open source implementa-
tion in [17], and benchmark the performance of an AMD Virtex™ Ultrascale™ FPGA. While the
original implementation is parameterised to generate multiple KEMs, we currently target only the
mceliece348864 parameter set, and the first estimates of the performance are summarised in
Table. 3.10.

module LUTs latency (ms) time × area
encap 977 0.14 0.13
decap 17109 0.16 2.74
keygen 26674 1.16 30.94

Table 3.10: Performance evaluation based on mceliece348864 parameter set and VCU128 imple-
mentation. We are aiming to parameterise and optimise an NTT implementation to suit multiple
KEM/parameter sets.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 59

3.3.5 Secured RISC-V Processor with Cryptographic Accelerators (SEC) –
BEIA

3.3.5.1 IP card

Basic Info
IP name Secured RISC-V Processor with Cryptographic Accelerators (SEC)
License Open-source (Apache License v2.0)
Repository https://github.com/ISOLDE-Project/AES-256

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4
Address Map 0x0000’1000

Initiator Interface
Protocol AXI4
Cached? N
IOMMU? N

Interrupts Interrupts N/A

Microarchitecture

Parametrization Parametric no. cores? N
Parameteric config? Y

Programmability Contains programmable cores? Y
ISA RISC-V (cv32a6)

Software

Compiler Requires specialized compiler? N
Compiler repository -

Hardware Abstraction Layer N

High-level API
Is there a high-level API/SDK? Y
SDK repository Not yet available
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) -
Standalone simulation? Y
(if standalone sim) SW requirements? -
Integration documented / examples? Not yet available

Synthesis
Is the IP synthesizable? Y
FPGA synthesis example available? Y
ASIC synthesis example available? N

Simulation Closed-source simulation? Y (Vivado simulator)
Open-source simulation? N

Evaluation PPA results available? N

3.3.5.2 Purpose

The SEC is a secure and modular component for cryptographic processing of IoT data, such
as energy management time-series. The data flow starts at the microcontroller, which acquires
sensor or grid data and applies AES-256 encryption to ensure confidentiality during transmission.
The encrypted data is then transmitted to an FPGA that includes a pre-loaded hardware security
accelerator. This component performs high-throughput AES-256 decryption to efficiently handle
secure data processing. After decryption, the data is made available to a RISC-V CVA6 softcore
running on the FPGA, which hosts a Linux operating system. Within this environment, Open-
EMS (Open Energy Management System) operates as a software application, enabling real-time
monitoring and control of distributed energy systems. Finally, the data is visualized through the
OpenEMS UI, allowing users to monitor and analyze energy data through an interactive graphical
interface.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 60

3.3.5.3 Refined Architecture Descripton

The refined architecture represents a secure and modular pipeline for data acquisition, crypto-
graphic processing, and visualization of energy management.

Figure 3.22: BEIA architecture block diagram

The data flow starts firstly at the microcontroller that acquires sensor data or grid data and ap-
plies (Advanced Encryption Standard) AES-256 encryption to deliver confidentiality during trans-
mission. The encrypted data is then transmitted to a (field-programmable gate array) FPGA with
a pre-loaded hardware security accelerator. The FPGA performs high-throughput AES-256 de-
cryption, freeing the processor from computational burden and enabling real-time processing.
The decrypted data are then passed to OpenEMS (Open Energy Management System), an open
source real-time monitoring and control platform for distributed energy systems.

3.3.5.4 Interfaces

Within the FPGA, there is an embedded RISC-V soft-core processor that handles inter-module
communication, task scheduling, and data exchange between the decryption engine and the
OpenEMS runtime. The RISC-V core leverages internal the (Advanced eXtensible Interface)
AXI that interconnects to enable low-latency, effective communication between logic blocks. Af-
ter OpenEMS processing, relevant energy metrics are transferred to a user interface (UI) mod-
ule—typically executed on a local or remote device—to be visualized. This layer facilitates opera-
tors access to dashboards, real-time analytics, and past trends. Scalability and edge deployment
are what the architecture facilitates, as well as modular extensions in the shape of additional sen-
sor interfaces, cloud connectivity, or machine learning accelerators, rendering this architecture
well-suited for secure, smart energy infrastructure applications.

3.3.5.5 Evaluation Prototype

Prototyping has been performed preliminarily for the following implementations:

• AES tiny: low program memory footprint at the expense of RAM usage
• AES small: low RAM footprint at the expense of program memory usage
• AES ni: using Intel x86’s AES-NI dedicated instructions =
• AES ni avx2: using Intel x86’s AES-NI and AVX2 extensions
• AES ni omp: using Intel x86’s AES-NI dedicated instructions and multi-core OpenMP im-

plementation

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 61

Speed-testing of these functions was made by encrypting and decrypting 1GB of data using CTR
mode and the measurements were taken on Asus ROG X13 laptop with Ryzen 5900HS CPU.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 62

3.4 Signal Processing, Neuromorphic and Application-Specific
Instruction Set Processors (ASIPs)

This section showcases a range of accelerators tailored to signal processing tasks, neuromor-
phic computing, and domain-specific processing using customized instruction sets, developed as
part of the activity of Task 3.6 – Signal processing, neuromorphic and application-specific
instruction set processors (ASIPs), led by CODA. These components enhance performance
for workloads that demand high throughput, low latency, or specialized functional units.

The IPs included in this category are:

• FFT – Fast Fourier Transform Algorithms for SIMD and Vector Accelerators (IMT): Split
radix FFT algorithms for vector accelerators and FFT hardware accelerator integrated with
the PolyMem scratchpad memory.

• LDPC – Low-Density Parity Check Encoder (ACP): A hardware encoder for LDPC codes,
commonly used in wireless and optical communication systems for robust error correction.

• Motor Control Accelerator (CODA): An application-specific accelerator designed for real-
time control of electric motors, suitable for industrial and automotive environments.

• Neuromorphic HW Accelerator (POLITO): A hardware module inspired by the principles of
neuromorphic computing, aimed at event-driven processing with ultra-low power consump-
tion.

• SCA – Shared Correlation Accelerator (ACP): An accelerator for performing correlation-
based operations in signal processing pipelines, with applications in communication and
sensor data analytics.

• Turbo Decoder (ACP): A hardware decoder for turbo codes, commonly used in wireless
and optical communication systems for robust error correction.

These accelerators address the needs of specific verticals such as communications, control
systems, and bio-inspired computing, and are instrumental in enabling ISOLDE’s flexible, high-
performance computing platforms.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 63

3.4.1 Fast Fourier Transform Algorithms for SIMD and Vector Accelerators
(FFT) – IMT

3.4.1.1 IP Card

Basic Info
IP name FFT accelerator
License Open-source (GPLv3.0)
Repository https://github.com/sirazvan/twister FFT

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? Y
Memory mapped? N
Protocol CV-X-IF
Address Map

Initiator Interface
Protocol CV-X-IF
Cached? N
IOMMU? N

Interrupts Interrupts

Microarchitecture

Parametrization Parametric no. units? Y (default 1 lane)
Parameteric config? Y

Programmability Contains programmable cores? N
ISA RISC-V

Software

Compiler Requires specialized compiler? Y
Compiler repository See IP card for Vector-SIMD Accelerator, IMT

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository N
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any) N
Standalone simulation? N
(if standalone sim) SW requirements?
Integration documented / examples? WIP

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? WIP
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Vivado
Open-source simulation? verilator

Evaluation PPA results available? Work in progress

3.4.1.2 Purpose

The Fast Fourier Transform (FFT) is largely used in various fields, from high-performance com-
puting to low power signal processing, with many available software and hardware implemen-
tations. The split-radix FFT algorithm uses the least number of operations (multiplications and
additions/subtractions), of the order of 4N log2 N , compared to 5N log2 N for the Cooley-Tukey
radix-2 algorithm. However, most software and hardware implementations prefer radix-2 or higher
radix algorithms due to their regular structure. We explore the use of the split-radix FFT (in-place,
decimation-in-frequency, scrambled output) for SIMD and vectorial accelerators and propose a
constant geometry version for hardware implementation. We also explore the integration of the
FFT block with the PolyMem scratch-pad memory, developed separately in this work package, to
take advantage of the 2D layout and software-defined registers.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 64

3.4.1.3 Algorithms

Figure 3.23: Split radix recursive 4/8 algorithm.

We have adapted the split-radix FFT algorithm for use in SIMD and vectorial accelerators. We
are using an in-place, decimation-in-frequency, scrambled output, recursive split-radix approach
that is able to take advantage of the high number of registers in actual accelerators. As an
example, we show in Figure 3.23 the version we have used for avx2 in x86, using a well-known
polynomial notation. At each level we calculate from a polynomial remainder modulo x2n − r2

the two polynomial remainders modulo xn − r and modulo xn + r, equivalent to a butterfly with
coefficient r. At the end, we twist each polynomial (a change of variable equivalent to a rotation
in the complex plane), where each coefficient is multiplied by a power of some root of unity. This
changes the remainder to one modulo xn−1, to which we can apply the same method recursively,
until we reach polynomials of degree 1 which represent precisely the FFT. The inverse FFT (on the
scrambled output) can be presented as climbing from lower degree polynomials to larger degrees
or the same Figure 3.23, but with all arrows reversed.

In Figure 3.23 we work simultaneously on eight vectors (each with real and imaginary parts) and
therefore we fully utilize the 16 vectorial registers present in avx2, doing the maximum possible of
calculations that need only these 8 complex values, before writing them back to memory. We also
need to load several complex roots that occupy supplementary registers; however, the compiler
is able to schedule all instructions without spills (with a single spill for the inverse transform with
all arrows in reverse order). A similar approach has been used for avx512 where there are 32
vectorial registers, starting with x32n−1 and going down to a couple of x2n−1 and the rest xn−1.
All these operations are easily vectorized as long as n is larger than the number of values V in a
vector register. When attaining this limit, we apply a single V × V transposition (using in-vector
shuffles and permutations) and continue with vectorized calculations down to x− 1, or evaluation
of the original polynomial at the roots of unity.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 65

Figure 3.24: Split radix constant geometry algorithm

For a hardware implementation, we have developed a constant geometry version of the split-radix
algorithm, shown in Figure 3.24. Like the radix-4 FFT algorithm, we step through two levels at
each pass, but globally we use less complex multipliers. However, at each pass we may encounter
either x4n−1 or x4n+1, and Figure 3.24 shows how each is treated. Practically, we need a single
block that can be configured for either version. A second advantage is that we can use the same
block for real inputs, but continue with only half of the outputs, as the other half is clearly the
complex conjugate. The combination of multiplication by a root and its conjugate of two complex
numbers has been called a ”twister”; it is similar to a radix-4 butterfly but uses a single root instead
of two.

3.4.1.4 Architecture

Our plan is to build a generic FFT block that can be used in multiple cases. For a start, we
have chosen a block for FFT16, equivalent to a transformation from x16 − 1 to 16 × (x − 1). One
direct application is presented in Figure 3.25, showing an integration with the PolyMem scratch-
pad memory for a 16x16 = 256 FFT. We note that this software configurable memory is developed
separately in ISOLDE by IMT. The well-known 4-step FFT (extensively used for GPU accelerators)
orders the 256 values as a 16x16 matrix, applies FFT16 along all columns, multiplies the matrix
point by point with a matrix of roots of unity, and then applies FFT16 along all rows (equivalent to
two steps - a transpose and then FFT16 along columns). The use of the software configurable
memory is doubly advantageous - the point by point matrix multiplication is already present as
an instruction, and there is no need for a matrix transposition, as we can reconfigure directly
the memory for row registers. Each column is transferred to our FFT16 block, transformed, and
written back in place. To speed up this step, we can either use a single FFT16 block and pipeline
all columns, or use several blocks in parallel. Internally, the FFT16 block can be built using either
radix-2, radix-4 or split radix, the last with fewer multipliers. It can also be parallelized vertically
using a constant geometry version and an internal register. From the software point of view, we
need to add a single instruction to the accelerator.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 66

Figure 3.25: FFT accelerator and integration with PolyMeM scratchpad memory

By adding twisters at the exit of FFT16 we can adapt it to treat the reduction from x16n−1 to xn−1
and use it for a radix-16 FFT. Combining this with the 4-step approach gives precisely the case
presented in Figure 3.25, with a FFT for a 16N × 16N array. We note also that the FFT16 can

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 67

be easily configured as FFT8 by transferring only 8 values to the block and initializing the other 8
as zeros. This provides the possibility of doing 8N1 × 16N2 or 8N1 × 8N2 transforms, where the
4-step approach can be applied to a rectangular matrix. Finally, we are able to provide FFT for all
lengths powers of 2 starting with 64.

We note that the same FFT16 (or a similar FFT8) block can be used independently from the
scratch-pad memory, as shown for the number-theoretic transform in Figure 3.20.

3.4.1.5 Evaluation

Figure 3.26: Speed comparison for vectorized FFTs (avx2), double, AMD 5800x processor. Lines
show the boundaries beyond which the array is larger than the L1, L2 and L3 cache.

We have evaluated the proposed split-radix algorithms in MATLAB and separately in C to ex-
plore their vectorizing capabilities using avx2 and avx5123. We note that these software imple-
mentations have an intrinsic value, as they can easily be ported from avx2/512 to the vectorial
accelerators for RISC-V. The scalar versions are also useful for use in embedded processors.
Speed results are shown in Figure 3.26 and compared to FFTW, the state of the art open-
source FFT implementation (https://www.fftw.org) and djbbft, an old scalar library by D.J. Bern-
stein (https://cr.yp.to/djbfft.html) which was the inspiration for our vectorized version. The timings
are transformed to Giga FLOPS using the methodology proposed by FFTW: (5N log2 N/t where
t is the running time in nanoseconds. We show mean values averaged over 102 − 106 runs (less
for large arrays). While the use by FFTW of vector acceleration clearly improves upon the scalar
version of djbfft, our version gives a consistent improvement of 1.5 − 2.5× over the full range of
lengths.

The RISC-V hardware implementation of the proposed architecture has been started recently by
a new colleague and is still a work in progress.

3Software available at https://github.com/mgologanu/srfft.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 68

3.4.2 Low Density Parity Check Encoder (LDPC) – ACP

3.4.2.1 LDPC IP card

Basic Info
IP name LDPC
License proprietary closed source
Repository

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol APB
Address Map TBD

Interrupts Interrupts 1

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? N

Programmability Contains programmable cores? N
ISA N.A.

Software

Compiler Requires specialized compiler? N
Compiler repository

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any)
Standalone simulation? Y
(if standalone sim) SW requirements? Cadence Insicive
Integration documented / examples?

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? N
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (Cadence Insicive)
Open-source simulation? N

Evaluation PPA results available? N

3.4.2.2 Purpose

The 5G New Radio (NR) standard utilizes a low-density parity check (LDPC) code to correct
errors that occur during transmission on the wireless link. A device that wants to send an NR
uplink (PUSCH) must therefore encode the payload before it is modulated and transmitted. The
task of the LDPC encoder is encoding the payload according to the 5G standard, such that the
base station can later recover it. The tight latency requirements and single-bit operations make
this task well suited for a hardware accelerator.

3.4.2.3 Architecture

The LDPC encoder is designed to encode the NR QC-LDPC code and supports both base graphs
which enable it to handle a large range of transport block sizes (TBS) and code rates. It supports
all the different lifting sizes Z from 2 to 384 as required by the standard.

Figure 3.27 illustrates the block-level architecture of the LDPC encoder. Uncoded information bits
are loaded via a memory interface, passed through the CRC unit that appends a 16 or 24 bit hash,
and stored in the systematic section of a local memory (PUSCH MEM). The actual LDPC encoder
takes advantage of the underlying structure of the LDPC codes, which consists of subrows and

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 69

subcolumns combining a configurable number of Z parity check rows and Z columns, respectively.
The encoding process is then performed mainly in a subrow-by-subrow fashion each consisting
of a maximum of Z = 384 xor-based parity check operations. Therefore, the architecture foresees
parallel xor-gates that can calculate up to 384 parity checks in parallel in a streaming fashion. A
control unit initiates the load of the next sub-matrix consisting of Z bits sequentially via a 32-bit
memory interface, configures the circular-shift unit as specified by the active parity-check base
matrix, and finally stores the resulting parity bits into the local memory (PUSCH MEM).

3.4.2.4 Evaluation

A key challenge during the design of the LDPC encoder is the highly configurable circular-shift
unit that needs to support varying submatrix sizes between Z = 2 and 384 with shift values
between 0 and Z − 1 in each configuration. Standard barrel-shifter approaches are unsuitable, as
multiplexing and routing overhead would drastically inflate silicon area footprint. Instead, a more
efficient implementation is targeted that combines two linear shifter circuits resulting in significant
area savings.

Figure 3.27: High-level diagram of the LDPC encoder.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 70

3.4.3 Motor Control Accelerator – CODA

3.4.3.1 IP Card

Basic Info
IP name Motor Control Accelerator
License Proprietary Codasip Licence
Repository N/A

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally Y (multiple clock domains generated from main core clock input)

Main Core RISC-V Core A730 [19]

Ctrl

ISA extension? RISC-V V 1.0
Memory mapped? N
Interface Protocol Custom accelerator, AXI5

Memory Interface Protocol 128bit AXI5 (AXI WIDTH = 2 ∗XLEN)
Hierarchy Level Separate L1 cache with shared L2 cache

Interrupts Interrupts Same as for A730

Microarchitecture

Parametrization Parametric no. units? One per core
Parameteric config? N

Programmability Contains programmable cores? Y (A730)
ISA RISC-V (RV64IMAFDCV)

Software
Compiler Requires specialized compiler? Y (Automatically generated) or RISC-V compiler compatible with RISC-V V 1.0

High-level API Is there a high-level API/SDK? Y - C intrinsics

Integration

IP Distribution

Manifest type (if any) No
Standalone simulation? No (A730 Required)
SW requirements? QuestaSim
Integration documented / examples? Y

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Work in progress
ASIC synthesis scripts/example available? Work in progress

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? N

Evaluation PPA results available? Work in progress

3.4.3.2 Purpose

Codasip is developing a motor control accelerator by customizing one of its existing application
cores to better match the specific workload requirements. The target workload is a Model Pre-
dictive Control (MPC) library provided by NXP-CZ. An analysis of this implementation, conducted
by ISOLDE partner NXP-CZ [20], showed that the MPC application is highly computationally
intensive. Further profiling identified the kernel sgemm nt 4x4 lib4 function as the primary perfor-
mance hotspot, responsible for basic matrix multiplication on 4x4 tiles.

3.4.3.3 Accelerator Architecture

Based on the analysis of the MPC workload, Codasip selected the A730 application core and
Codasip Studio EDA as an ideal foundation for a hardware/software co-design approach.

Codasip A730 RISC-V core: Figure 3.28 illustrates the Codasip A730, a 64-bit RISC-V appli-
cation processor designed for mid-range compute workloads. It features a dual-issue in-order
execution and Memory Management Unit (MMU), enabling support for rich operating systems
such as Linux. The processor is available in both single-core and multi-core configurations, with

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 71

up to four cores per cluster. Designed for flexibility, the A730 is well-suited for power-constrained
devices that require efficient execution of complex compute tasks.

The core includes separate instruction and data L1 caches, along with a shared L2 cache. Since
the Model Predictive Control (MPC) algorithm is single-threaded, the single-core variant of the
A730 was selected for porting the MPC implementation.

Figure 3.28: Codasip A730 RISC-V core

As part of the ISOLDE project, the Codasip team contributed to the seamless integration of a
vector extension [21] into the processor pipeline. This was accomplished through the incorpo-
ration of a Vector Register File (VRF), a Vector Sequencer (VSEQ), and a Vector Processing
Unit (VPU). The VPU is responsible for executing vector instructions by processing sequences
of micro-operations generated by the VSEQ. This modular architecture enables both efficient
execution and flexible customization. The tight coupling with the processor pipeline facilitates low-
latency data exchange between the VPU and the rest of the core, significantly reducing the need
for pipeline stalls when custom instructions are issued.

Codasip A730 VPU components: The VPU in the A730 is composed of the following key com-
putational units:

• Perm Unit – Responsible for all bit ”movement” operations. It supports reordering input
values or replicating a specific input value across multiple output positions.

• VALU Unit – Handles fast vector arithmetic and logical operations, such as bitwise logic,
integer addition, and subtraction.

• VFPU Short Unit – Performs fast floating-point operations, including conversions between
integer and floating-point formats.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 72

• VFPU Unit – Executes floating-point vector operations such as addition and subtraction.
• ITER Unit – Implements division and square root operations using an iterative algorithm.
• Multiplication Unit – Responsible for multiplication and multiply-accumulate operations for

both floating-point and integer data types.

It is clear that not all vector instructions can be executed through a single operation by the VPU.
For example, RVV instructions such as vfredosum.vs require a series of additions to be performed
sequentially. The number of required operations depends on configuration parameters such as
the vector length multiplier (LMUL) and the data type (e.g., single- or double-precision). This com-
plexity is handled by the Vector Sequencer (VSEQ), which dynamically generates the appropriate
sequence of additive µ-operations for execution by the VPU.

In the current implementation, the vector length (VLEN) is set to 128 bits.

Codasip A730 VPU Interfaces: The A730 core has two main interfaces through which it can
be integrated into an SoC:

• Data interface is compliant with AXI-5 (128bits) with support for atomics.
• Debug interface provided via DMI with access to the System bus.

The VPU is integrated into the Codasip A730 core through the following interfaces:

• Memory Interface: All memory accesses are handled via the Data Cache Unit.
• Issue Interface: The decode unit is extended to support new instructions, while maintaining

compatibility with the existing pipeline.
• Forwarding Interface: Shared across all computation units, it enables efficient result reuse

by bypassing the write-back stage.

3.4.3.4 Evaluation

The evaluation process is currently ongoing. To assess the impact of the customization, ex-
periments will be conducted on both the baseline A730 core and the customized version, with
their performance results compared. The application used for these experiments is described
in Section Model Predictive Control Demonstrator of ISOLDE Deliverable D5.2. To support this
evaluation, the Codasip team plans to develop an FPGA-based platform for running the core.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 73

3.4.4 Neuromorphic HW Accelerator – POLITO

3.4.4.1 IP Card

Basic Info
IP name Neuromorphic HW accelerator
License Open-source (SolderPad Hardware License v2.1)
Repository Not Yet Released - refer to https://github.com/CHFrenkel/reckon/ for the original design

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol AXI4 64b (Data, commands) / SPI (Configuration)
Address Map ?

Interrupts Interrupts? Y

Microarchitecture

Parametrization Parametric Systolic Array shape? Y
Parameteric SRAMs? Y
Configurable PEs? Y

Programmability Contains programmable cores? Y

Software

Hardware Abstraction Layer
Are there macros for direct register access? Y
Are there HAL functions? Y

Integration

IP Distribution

Standalone simulation? Y
SW requirements? QuestaSim
Integration documented / examples? Refer to main Cheshire repo from pulp-platform

https://github.com/pulp-platform/cheshire

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? N

Simulation Closed-source simulation? Y (QuestaSim)
Open-source simulation? Y

Evaluation PPA results available? N

3.4.4.2 Purpose

As Artificial Intelligence (AI) applications are increasingly deployed on resource-constrained de-
vices, there is a growing need for efficient hardware acceleration of Deep Neural Networks (DNNs).
One promising approach is the simulation of Spiking Neural Networks (SNNs) on dedicated neu-
romorphic hardware, which can emulate brain-like processing of time-varying signals and enable
real-time inference on input data.

The key strength of SNN hardware accelerators is the small amount of resources required to
perform parallel computation on data, enabling brain-inspired computation at the edge and on IoT
devices.

In the next section, we show how a neuromorphic accelerator can be integrated with a RISC-V-
based processor using the AXI bus to bring edge AI to heterogeneous systems.

3.4.4.3 Architecture

The architecture of the SoC depicted in Figure 3.29 is composed of four main elements:

1. The Cheshire processor, a Linux-capable open-source processor built around the RISC-V
core CVA6. It is provided with peripherals like SPI, UART, VGA, and the AXI controller.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 74

RISC-V
SYSTEM

AERIN /
OUT

SNN
Accelerator

AER
decoder

Registers

AXI

SPI

Ctrl

Memory (DRAM)

Figure 3.29: Neuromorphic HW accelerator architecture.

2. The AXI subsystem, which collects the AXI-accessible peripherals used to communicate
between the host and the accelerator: a Register File that exposes some registers for run-
time configuration during training or inference; a Control Interface used to communicate with
the Address Event Representation (AER) decoder. In addition, the external on-board DDR
memory can also be accessed with the EXI bus from the main SoC.

3. The AER decoder, the binding element between the controllers and the SNN accelerator, is
responsible for decoding the 32-bit words stored in the buffer memory into the related input
spikes and sending them to ReckOn. At the end of each sample, the per-epoch accuracy
is updated during training and validation by reading the inferred results generated by the
network. The resulting accuracy is finally transferred to the main host through the AXI
Register File.

4. The neuromorphic accelerator, open-source project ReckOn 4. The accelerator runs a Re-
current Spiking Neural Network with an embedded weight update mechanism based on
the e-prop algorithm that allows on-chip training. Weights and network status are stored in
internal memories implemented in BRAMs.

3.4.4.4 Evaluation

The evaluation process is currently underway. In order to assess the impact of the IP, experi-
ments will be conducted on various Edge AI tasks (listed below) on both the baseline version
implemented on the ARM core and the Cheshire version, and the performance results will be
compared.

4https://github.com/ChFrenkel/reckon

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 75

Performance

• Evaluation environment: Architecture design implementation on ZCU102 development board.
• Clock Frequency: Accelerator runs at 15 MHz

Edge-AI tasks

• Benchmark on a binary navigation classification dataset.
• Test on Braille handwritten digits recognition (7 classes).
• Final demonstration on ESA anomaly detection for spacecraft predictive maintenance.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 76

3.4.5 Shared Correlation Accelerator (SCA) – ACP

3.4.5.1 SCA IP card

Basic Info
IP name Shared Correlation Accelerator (SCA)
License proprietary closed source
Repository

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? Y
Protocol APB
Address Map 0x000: Control

0x004 to 0x17c: Configuration

Initiator Interface
Protocol PULP TCDM
Cached? N
IOMMU? N

Interrupts Interrupts 1

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? N

Programmability Contains programmable cores? N
ISA N.A.

Software

Compiler Requires specialized compiler? N
Compiler repository

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any)
Standalone simulation? Y
(if standalone sim) SW requirements? Cadence Insicive
Integration documented / examples?

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? Y

Simulation Closed-source simulation? Y (Cadence Insicive)
Open-source simulation? N

Evaluation PPA results available? Y

3.4.5.2 Purpose

In wireless communication, known sequences are commonly used to facilitate initial synchroniza-
tion as a first step towards establishing a communication link. The receiving device then attempts
to find these known sequences in the received signal. The maximum-likelihood approach for this
task involves computing many cross-correlations with the known sequences for multiple frequency
offset hypotheses. The shared correlation accelerator (SCA) enables this approach by efficiently
computing these correlations at high throughput.

3.4.5.3 Architecture

Figure 3.30 shows the architecture of the SCA. The SCA primarily relies on a streaming length-
2048 FFT unit. It is used to transform both the correlation sequences and the received samples
to the frequency domain. Correlations with multiple frequency offset hypotheses can easily be
computed by circularly shifting the correlation sequence in frequency domain. The correlation is
computed using a simple multiplication in the frequency domain. Afterwards, the FFT is used

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 77

again, in inverse mode, to transform the correlation results back to time domain. The final ac-
cumulation block decimates the time-domain correlation results and accumulates them. As the
memory capacity requirement for the correlation values is large, it is stored in the TCDM. This
allows the memory to be time shared with other functions. A sample buffer at the input stores
the incoming samples and absorbs the uneven consumption rate of the correlator. It also imple-
ments filtering, decimation, and amplitude normalization to reduce the fixed-point width within the
accelerator.

Figure 3.30: High-level diagram of the SCA.

3.4.5.4 Evaluation

The accelerator has been integrated into a modem SoC. The SoC has been implemented on an
FPGA and synthesized in 22 nm CMOS.

FPGA

• Evaluation platform:
– AMD Versal Prime VMK180 Board with two custom expansion PCBs
– Implemented at reduced 100 MHz clock

* Live operation possible with reduced number of frequency hypotheses.
– Resource utilization: 9.3k FFs, 18k LUTs
– Bring-up completed with RISC-V controller CPU (Ibex)
– Successful cell detection on RF signal

ASIC

• CMOS technology: 22 nm
• Clock frequency: 400 MHz (worst-case corner)
• Synthesis area: 0.2 mm2 = 520 kGE

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 78

3.4.6 Turbo Decoder – ACP

3.4.6.1 Turbo IP card

Basic Info
IP name Turbo Decoder
License proprietary closed source
Repository

Architecture

Clock
Number of clock domains 1
Synchronous with system Y
Clock generated internally N

Ctrl Interface

ISA extension? N
Memory mapped? N
Protocol N.A.
Address Map N.A.

Initiator Interface
Protocol PULP TCDM
Cached? N
IOMMU? N

Interrupts Interrupts 1

Microarchitecture

Parametrization Parametric no. units? N
Parameteric config? N

Programmability Contains programmable cores? N
ISA N.A.

Software

Compiler Requires specialized compiler? N
Compiler repository

Hardware Abstraction Layer N/A

High-level API
Is there a high-level API/SDK? N
SDK repository
Is there a domain-specific compiler? N

Integration

IP Distribution

Manifest type (if any)
Standalone simulation? Y
(if standalone sim) SW requirements? Cadence Insicive
Integration documented / examples?

Synthesis
Is the IP synthesizable? Y
FPGA synthesis scripts/example available? Y
ASIC synthesis scripts/example available? Y

Simulation Closed-source simulation? Y (Cadence Insicive)
Open-source simulation? N

Evaluation PPA results available? Y

3.4.6.2 Purpose

Wireless communication standards employ forward error correction to correct errors that occur
during the transmission. The main data channel in LTE uses a turbo code, which can achieve
excellent error-correcting performance. The purpose of the turbo decoder is to iteratively process
the soft information from the demodulator and recover the transmitted code block. If the data was
decoded successfully, it is then forwarded to the upper protocol levels, otherwise, the base station
will attempt a re-transmission.

3.4.6.3 Architecture

Figure 3.31 shows the architecture of the turbo decoder. The turbo decoder receives soft infor-
mation on the received bits in the form of LLRs. It then processes them iteratively, in multiple
half-iterations, to recover the transmitted data. In each half-iteration, the LLRs are first read from
the input and extrinsic LLR memory. After preprocessing, the decoder first computes the path
and secondly the state metrics for each input bit. To limit the internal memory requirements, this
processing is performed in local windows of 64 bits. Then, the unit derives the updated extrinsic

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 79

Figure 3.31: High-level architecture diagram of the turbo decoder.

LLRs from the state metrics and writes them back to the extrinsic memory. Simultaneously, the
hard decoded bits are computed and forwarded to the CRC check unit. If the CRC matches, or the
maximum number of half-iterations has been reached, the decoded bits are written to the TCDM
for further use by the RISC-V processor.

3.4.6.4 Evaluation

The turbo decoder has been integrated into a cellular modem SoC. The SoC has been imple-
mented on an FPGA and synthesized in 22 nm CMOS.

FPGA

• Evaluation platform:
– AMD Versal Prime VMK180 Board with two custom expansion PCBs
– Implemented at reduced 100 MHz clock

* Live operation possible with lower number of half-iterations.
– Resource utilization: 2.1k FFs, 10k LUTs
– Bring-up completed with RISC-V controller CPU (Ibex)
– Successful decoding of data channel from RF signal

ASIC

• CMOS technology: 22 nm
• Clock frequency: 400 MHz (worst-case corner)
• Synthesis area: 0.07 mm2 = 190 kGE

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 80

4 Conclusion
This deliverable has presented the prototype implementations of the hardware accelerators and
extensions developed within Work Package 3 of the ISOLDE project. The described IPs span
a broad range of domains—including arithmetic units, AI/ML and vector accelerators, crypto-
graphic modules, and application-specific processors—demonstrating both architectural diversity
and technical maturity.

Each section has documented the functional scope, integration readiness, and preliminary evalu-
ation results of the IPs, supporting their continued refinement and validation. These contributions
represent a key step toward full system integration in WP5 demonstrators.

Deliverable D3.3 (together with D3.2) forms the basis for the upcoming finalization and optimiza-
tion phases in D3.4 and D3.5.

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 81

Acronyms and Definitions
Acronym Description
ACC-BIKE ACCelerator for post-quantum key encapsulation mechanism BIKE
ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
AHB Advanced High-performance Bus
AI Artificial Intelligence
ALU Arithmetic Logic Unit
AMA AI/ML Accelerator
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASCON Lightweight authenticated block cipher
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction Set Processor
ASLR Address Space Layout Randomization
AXI Advanced eXtensible Interface
AXI-MM AXI Memory Mapped
AXIS AXI Stream
BCFI Backward-Edge Control Flow Integrity
BRAM Block RAM
BS Base Station
CA-PMC Context-Aware Performance Monitor Counter
CA-PMC-IF Context-Aware PMC Interface
CBD Contract Based Design
CCS Contention Cycles Stack
CE Computing Element
CFI Control Flow Integrity
CMOS Complementary Metal-Oxide Semiconductor
CNN Convolutional Neural Network
CORDIC Coordinate Rotation Digital Computer
COP Call-Oriented Programming
CPU Central Processing Unit
CPS Cyber-Physical Systems
CRC Cyclic Redundancy Check
CSR Control and Status Register
CTM Cryptographically Tagged Memory
CV-X-IF Core-V eXtension Interface
DBB Digital Base Band
DDR Double Data Rate Synchronous Dynamic Random Access Memory
DES Data Encryption Standard

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 82

DFT Discrete Fourier Transform
DFU Decoder Functional Units
DMA Direct Memory Access
DMR Dual Modular Redundancy
DSP Digital Signal Processor
DSS Digital Signature Schemes
DVS Dynamic Vision Sensor
ECC Error Correction Code
EMI Enclave Memory Isolation
ECNNA Event-based CNN Accelerator
EXP EXtension Platform
FCFI Forward-edge Control Flow Integrity
FFT Fast Fourier Transform
FP Floating Point
FPGA Field Programmable Gate Array
FSM Finite State Machine
FIFO First-In-First-Out
FIR Finite Impulse Response
FMA Fused-Multiply-Add
FPMIX FPU for MIXed-precision computing
FPU Floating Point Unit
GEMM GEneral Matrix Multiply
GPIO General Purpose Input/Output
HARQ Hybrid Automatic Repeat Request
HCI Heterogeneous Cluster Interconnect
HDK Hardware Development Kit
HLS High Level Synthesis
HLS-PQC HLS-based Post-Quantum Cryptographic accelerator
HMAC Hash-based Message Authentication Code
IEE Inline Encryption Engine
IEE-RV Inline Encryption Engine RISC-V ISA extension
INET Interconnection NETwork
INTT Inverse Number Theoretic Transform
IP Intellectual Property
ISA Instruction Set Architecture
ISE Instruction Set Extension
IUHF Inverse Universal Hash Function
JOP Jump-Oriented Programming
KEM Key Encapsulation Mechanism
KMAC KECCAK Message Authentication Code
LDPC Low Density Parity Check Decoder
LIF Leaky Integrate and Fire (neuron model)
LSW Least Significant Word
LLR Log Likelihood Ratio

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 83

M Machine Mode
MAC Multiply-Accumulate
MC Memory Controller
MCCU Maximum Contention Control Unit
MDPC Moderate-Density Parity-Check
ML Machine Learning
ML-DSA Module-Lattice-based – Digital Signature Standard
ML-KEM Module-Lattice-based – Key Encapsulation Mechanism
MMIO Memory Mapped Input/Output
MMU Memory Management Unit
MPSoC Multiprocessor System on a Chip
MSW Most Significant Word
NIST National Institute of Standards and Technology
NoC Network on Chip
NR New Radio
NTT Number Theoretic Transform
ONNX Open Neural Network eXchange
OVI Open Vector Interface
PC Program Counter
PCA Parallel Computing Accelerator
PE Processing Engine
PMP Physical Memory Protection
PMU Performance Monitor Unit
POR Power-On Reset
PPA Power, Performance, and Area
PQC Post-Quantum Cryptography
PQC-MA Post-Quantum Crypto Accelerator
PRF Polymorphic Register File
PRINCE Low-latency block cipher
PRNG Pseudorandom Number Generator
QC Quasi-Cyclic
QUARMAv2 Lightweight tweakable block cipher
RDC Request Duration Counter
ReO Rectangle Only
ReRo Rectangle Row
ReTr Rectangle Transposed
RF Radio Frequency
RFOG Register File Organization Table
RoCo Row Column
ROM Read-Only-Memory
ROP Return Oriented Programming
RoT Root-of-Trust
RSA Rivest–Shamir–Adleman
RTL Register Transfer Level

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 84

RTPM Run-Time Power Monitoring instrumentation
RV32 32-bit RISC-V processor model
RVV RISC-V Vector extension
S Supervisor Mode
SafeSU Safety-related Statistics Unit
SafeTI Safety-related Traffic Injector
SCA Shared Correlation Accelerator
SCH SCHeduler
SCMI System Control and Management Interface
SDK Software Development Kit
SDRAM Synchronous Dynamic Random Access Memory
SEC SECured RISC-V processor with cryptographic accelerators
SHA Secure Hash Algorithms
SIMD Single Instruction Multiple Data
SLDU SLiDe Unit
SLH-DSA Stateless Hash-Based Digital Signature Standard
SM Security Monitor
SNN Spiking Neutral Networks
SoA State of the Art
SoC System on a Chip
SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
TBS Transport Block Sizes
TCCP Time Contract monitoring Co-Processor
TCCP-CO Time Contract monitoring Co-Processor COmpiler
TCDM Tightly-Coupled Data Memory
TI Tweak Input
TLUL TileLink Uncached Lightweight bus
TMR Triple Modular Redundancy
TPU Tensor Processing Unit
U User Mode
UE User Equipment
UHF Universal Hash Function
IUHF Inverse Universal Hash Function
VLSI Very Large Scale Integration
VMFPU Vector Multiplier and Floating-Point Unit
VPU Vector Processing Unit
VRF Vector Register File
WCET Worst-Case Execution Time
XIF eXtension InterFace

D3.3 ISOLDE - public 30.04.2025

Deliverable D3.3 ISOLDE Page 85

Bibliography
[1] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “Fpnew: An open-source multiformat floating-

point unit architecture for energy-proportional transprecision computing,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 4, pp. 774–787, 2020.

[2] Synopsys, “Vcs: Functional verification solution,” 2025, accessed: 2025-04-09. [Online].
Available: https://www.synopsys.com/verification/simulation/vcs.html

[3] ——, “Z01x functional safety assurance,” 2025, accessed: 2025-04-09. [Online]. Available:
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html

[4] C. B. Ciobanu, G. Stramondo, C. de Laat, and A. L. Varbanescu, “Max-polymem: high-
bandwidth polymorphic parallel memories for dfes,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2018, pp. 107–114.

[5] C. B. Ciobanu, Customizable Register Files for Multidimensional SIMD Architectures.
Delft University of Technology, 2013. [Online]. Available: https://resolver.tudelft.nl/uuid:
6da2ee07-99df-450d-93bd-2367725f4f70

[6] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “Multimedia rectangularly addressable
memory,” IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 315–322, 2006.

[7] (2022, 05) Vcu128 evaluation board user guide (ug1302). AMD. [Online]. Available:
https://docs.amd.com/r/en-US/ug1302-vcu128-eval-bd

[8] J. Fornt, P. Fontova-Musté, M. Caro, J. Abella, F. Moll, J. Altet, and C. Studer, “An energy-
efficient gemm-based convolution accelerator with on-the-fly im2col,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 31, no. 11, pp. 1874–1878, 2023.

[9] F. Guella, E. Valpreda, M. Caon, G. Masera, and M. Martina, “Temet: Truncated reconfig-
urable multiplier with error tuning,” in Applications in Electronics Pervading Industry, Environ-
ment and Society, F. Bellotti, M. D. Grammatikakis, A. Mansour, M. Ruo Roch, R. Seepold,
A. Solanas, and R. Berta, Eds. Cham: Springer Nature Switzerland, 2024, pp. 370–377.

[10] Y. Tortorella, L. Bertaccini, L. Benini, D. Rossi, and F. Conti, “RedMule: A mixed-precision
matrix–matrix operation engine for flexible and energy-efficient on-chip linear algebra and
TinyML training acceleration,” Future Generation Computer Systems, vol. 149, pp. 122–135,
Dec. 2023.

[11] A. Belano, Y. Tortorella, A. Garofalo, L. Benini, D. Rossi, and F. Conti, “A Flexible Template
for Edge Generative AI with High-Accuracy Accelerated Softmax & GELU,” Dec. 2024.

[12] M. Perotti, M. Cavalcante, R. Andri, L. Cavigelli, and L. Benini, “Ara2: Exploring Single- and
Multi-Core Vector Processing With an Efficient RVV 1.0 Compliant Open-Source Processor,”
IEEE Transactions on Computers, vol. 73, no. 7, pp. 1822–1836, Jul. 2024.

[13] OpenHW Group. OpenHW Group Specification: Core-V eXtension interface (CV-X-IF).
[Online]. Available: https://github.com/openhwgroup/core-v-xif

D3.3 ISOLDE - public 30.04.2025

https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://resolver.tudelft.nl/uuid:6da2ee07-99df-450d-93bd-2367725f4f70
https://resolver.tudelft.nl/uuid:6da2ee07-99df-450d-93bd-2367725f4f70
https://docs.amd.com/r/en-US/ug1302-vcu128-eval-bd
https://github.com/openhwgroup/core-v-xif

Deliverable D3.3 ISOLDE Page 86

[14] ——. CVA6 RISC-V CPU. [Online]. Available: https://github.com/openhwgroup/cva6

[15] A. Puşcaşu, C. B. Ciobanu, and O. Buiu, “Systolic array matrix multiplication accelerator,” in
2024 International Semiconductor Conference (CAS). IEEE, 2024, pp. 207–210.

[16] C.-T. Axinte, A. Stan, and V.-I. Manta, “Embedded streaming hardware accelerators
interconnect architectures and latency evaluation,” Electronics, vol. 14, no. 8, 2025. [Online].
Available: https://www.mdpi.com/2079-9292/14/8/1513

[17] P.-J. Chen, T. Chou, S. Deshpande, N. Lahr, R. Niederhagen, J. Szefer, and W. Wang,
“Complete and improved fpga implementation of classic mceliece,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, p. 71–113, Jun. 2022. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/9695

[18] (2023, nov) Cva6: An application class risc-v cpu core. OpenHW Group. [Online]. Available:
https://docs.openhwgroup.org/projects/cva6-user-manual/index.html

[19] Codasip, “A730 Product Brief,” 2023. [Online]. Available: https://codasip.com/wp-content/
uploads/2023/10/Product-Brief-A730-2023-EN.pdf

[20] M. Kostal, “Model Predictive Control Acceleration on RISC-V CPU,” 2025.

[21] K. Asanovic, “RISC-V ”V” Vector Extension.” [Online]. Available: https://github.com/
riscvarchive/riscv-v-spec/releases/tag/v1.0

D3.3 ISOLDE - public 30.04.2025

https://github.com/openhwgroup/cva6
https://www.mdpi.com/2079-9292/14/8/1513
https://tches.iacr.org/index.php/TCHES/article/view/9695
https://docs.openhwgroup.org/projects/cva6-user-manual/index.html
https://codasip.com/wp-content/uploads/2023/10/Product-Brief-A730-2023-EN.pdf
https://codasip.com/wp-content/uploads/2023/10/Product-Brief-A730-2023-EN.pdf
https://github.com/riscvarchive/riscv-v-spec/releases/tag/v1.0
https://github.com/riscvarchive/riscv-v-spec/releases/tag/v1.0

	Executive Summary
	Introduction
	General Information
	Purpose and Scope

	Accelerators and Extensions
	Accelerator Infrastructure, Memories, Arithmetic Units, Interfaces and Virtualization
	FPU for Mixed-Precision Computing (FPMIX) – POLIMI
	Floating-Point Unit for RISC-V (FPU) – UzL
	Scratchpad - IMT

	SIMD/Vector, AI Accelerator and Tensor Processor Unit Design
	AI/ML Accelerator (AMA) – FotoNation
	CNN Accelerator for an Event-Based Sparse Neural Networks (ECNNA) – SAL
	Parallel Computing Accelerator (PCA) – POLITO
	Tensor Processing Unit (TPU) – UNIBO
	Vector Processing Unit (VPU) – ETHZ
	Vector-SIMD Accelerator – IMT
	Extension Platform (EXP) – TUI

	Cryptographic and Security Accelerators
	Accelerator for Post-Quantum Key Encapsulation Mechanism BIKE (ACC-BIKE) – POLIMI
	HLS-Based Post-Quantum Cryptographic Accelerator (HLS-PQC) – BSC
	Number Theoretic Transform Algorithms for Post Quantum Cryptography (NTT) – IMT
	Post-Quantum Crypto Accelerator (PQC-MA) – SAL
	Secured RISC-V Processor with Cryptographic Accelerators (SEC) – BEIA

	Signal Processing, Neuromorphic and Application-Specific Instruction Set Processors (ASIPs)
	Fast Fourier Transform Algorithms for SIMD and Vector Accelerators (FFT) – IMT
	Low Density Parity Check Encoder (LDPC) – ACP
	Motor Control Accelerator – CODA
	Neuromorphic HW Accelerator – POLITO
	Shared Correlation Accelerator (SCA) – ACP
	Turbo Decoder – ACP

	Conclusion

